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Recent advances and outstanding challenges 
for machine learning interatomic potentials

Tsz Wai Ko & Shyue Ping Ong

Machine learning interatomic potentials 
(MLIPs) enable materials simulations at 
extended length and time scales with near-ab 
initio accuracy. They have broad applications 
in the study and design of materials. Here, we 
discuss recent advances, challenges, and the 
outlook for MLIPs.

Atomistic simulations are an important tool in the study of materi-
als. The reliability of an atomistic simulation is critically dependent 
on the quality of the given potential energy surface (PES). Electronic 
structure methods provide ab initio descriptions of the PES across the 
periodic table, but at a high computational expense and poor scaling 
with system size. On the other hand, traditional interatomic potentials 
(IPs) parameterize the PES as a function of atomic degrees of freedom, 
gaining orders of magnitude speed-ups and linear scaling with respect 
to the number of atoms, but sacrificing significant accuracy and trans-
ferability in return.

In the past two decades, machine learning IPs (MLIPs) have 
emerged as a transformative alternative that bridges the gap between 
these two extremes. MLIPs are trained to a data set of reference struc-
tures with their corresponding energies, forces, and/or stresses, which 

are typically obtained from accurate ab initio calculations. State-of-
the-art MLIPs often achieve a prediction accuracy of <5 meV atom–1 
in energies and <0.1 eV Å–1 in forces, almost an order of magnitude 
better than traditional IPs and sufficient to resolve the small energy 
differences between many polymorphs1.

In this Comment, we will discuss and compare recent advances 
in MLIP architectures, as well as the outstanding challenges and 
opportunities.

Local environment versus graph descriptions
An MLIP comprises two interconnected components: the features used 
to describe the atomic character and positions, and the ML model used 
to map these features to the PES. MLIPs can be broadly categorized into 
two types (Fig. 1). The majority of MLIPs employ a set of descriptors 
to represent the local chemical environment of each atom, such as the 
atomic density or bond distances and angles, together with various ML 
algorithms ranging from simple linear regression to kernel methods 
to neural networks2. More recently, a new class of MLIPs has emerged 
that utilizes a graph description, in combination with message-passing 
neural networks. Henceforth, we will refer to the former as local MLIPs 
(L-MLIPs) and the latter as graph MLIPs (G-MLIPs).

The key advantages of L-MLIPs are their relative compactness 
and computational efficiency. A major recent advance in L-MLIPs is 
the atomic cluster expansion3, which provides a hierarchical, com-
plete, and efficient approach to incorporate many-body terms.  
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Fig. 1 | Types of machine learning interatomic potentials. a, Local MLIPs 
describe the local environment around each atom using descriptors based on the 
atomic density, bond distances and angles, and so on. An ML model is then 
trained to model the relationship between the local environment descriptors and 
the PES. The corrugated surface represents the PES of a system, which depends 
on the local chemical environment of each atom. b, Graph MLIPs utilize a 
graph-based representation where atoms are the nodes (vi, vj) and bonds are the 

edges (eij). Each node is a vector uniquely defined by elemental character. 
Information flows through the graph via message passing (arrows). The message 
passing functions ϕe and ϕv are usually feed-forward neural networks that are 
fitted as part of model training. In equivariant MLIPs, the message-passing 
functions are chosen such that they preserve the transformation of tensors under 
coordinate transformations.
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the number of elements as well as the absence of a large standardized 
dataset covering a wide range of chemistries. Both constraints have 
been significantly mitigated with the development of G-MLIPs and large 
open databases of DFT materials data such as the Materials Project. This 
has led to the emergence of ‘universal’ G-MLIPs5,6,9 trained on datasets 
that cover the entire periodic table.

At the present stage of their development, universal and custom 
MLIPs serve distinct and complementary purposes. While G-MLIPs 
perform comparably with custom MLIPs given the same training data5,9, 
the current generation of universal G-MLIPs generally makes compro-
mises in accuracy for specific chemistries in exchange for reasonably 
good accuracy across diverse chemistries. This is likely due to the inter-
related issues of the relatively less stringent DFT convergence criteria 
of existing whole-periodic-table PES datasets as well as insufficient 
model complexity. In fact, recent work suggests that addressing both 
these issues can improve the accuracy and extrapolability of universal 
G-MLIPs10. Despite these limitations, existing universal G-MLIPs have 
broad applications in the discovery and simulations of materials across 
diverse chemical spaces. They effectively replace ab initio methods 
where speed and scalability are prioritized over accuracy, such as 
conducting preliminary screening of millions of materials. Universal 
G-MLIPs can also be thought of as ‘foundation models’ for materials 
simulations, that is, pre-trained models with reliable performance 
across a wide range of tasks that can be further retrained quickly as 
custom MLIPs for specific chemistries or applications.

Data and learning
Regardless of architecture, MLIPs are only as accurate as the data on 
which they are trained. The predominant approach to generate such 
datasets is DFT calculations using semi-local generalized gradient 
approximation (GGA) functionals. However, it is well established that 
GGA functionals have major shortcomings that can be addressed with 
modern meta-GGA functionals11. The main impediment to using these 
improved functionals is their higher computational cost. Nevertheless, 
the generation of open, high-quality PES datasets using state-of-the-art 
methods is a critical immediate priority for future MLIP development.

Another major priority is the development of sampling and train-
ing approaches with better data efficiency. Current MLIP development 
best practices often incorporate some form of active learning (AL) to 
ensure comprehensive coverage of the configuration space of inter-
est. New approaches such as entropy maximization and uncertainty-
driven dynamics have recently been applied to bias the sampling to 
unexplored spaces, which accelerates AL. Despite these advances, AL 
can be highly inefficient for complex configuration spaces. Qi et al.10  
recently proposed an approach that utilizes universal G-MLIPs to gen-
erate a large configuration space without the need for DFT calcula-
tions, followed by dimensionality reduction and stratified sampling 
to ensure comprehensive coverage of the entire configuration space. 
This approach has been shown to reduce and, in some cases, eliminate 
the need for iterative AL. Finally, transfer learning and multi-fidelity 
approaches can also significantly reduce the number of high-fidelity 
training data points required12.

Charge and magnetism
With a few notable exceptions9,13,14, most MLIP architectures do not explic-
itly incorporate atomic charges and magnetism. Accurate descriptions of 
these long-ranged interactions are necessary for a wide range of materials 
science problems, including reactive systems and interfaces, electroni-
cally driven phase transitions, magnetic materials, and so on. In our view, 

This effectively addresses the incomplete representation between 
distinct atomic environments with only two-body and three-body 
descriptors4. Despite their major successes, a critical limitation of 
L-MLIPs is the combinatorial explosion in the number of features with 
the number of distinct elements, which has a corresponding impact 
on the amount of training data required, as well as computational effi-
ciency. Thus, L-MLIPs have mostly been applied to relatively chemically 
‘simple’ systems that contain up to four elements.

In contrast, the primary advantage of G-MLIPs is their ability to 
handle systems of arbitrary complexity. In G-MLIPs, each species is 
represented as a unique vector. As such, G-MLIPs do not suffer from 
the same combinatorial explosion with the number of distinct ele-
ments5. Furthermore, the range of atomic interactions can be extended 
beyond the cutoff radius for graph construction via the number of 
message-passing steps. However, the message-passing framework is 
inefficient in terms of modeling many-body interactions. Most mod-
ern G-MLIPs such as Materials 3-body Graph Network (M3GNet)5 and 
Message-passing Atomic Cluster Expansion (MACE)6 therefore com-
bine message-passing graphs with many-body terms based on either 
traditional IP or L-MLIPs formalism to achieve the best of both worlds. 
Also, nonlocal message-passing G-MLIPs are inherently more difficult 
to parallelize than local L-MLIPs. Hence, G-MLIPs are still about an 
order of magnitude more computationally intensive than L-MLIPs, 
and developing efficient implementations that can make the best 
use of large high-performance computing (CPU and GPU) resources 
remains an open challenge.

Invariance versus equivariance
All IPs are symmetry aware. At the minimum, all IPs must respect the 
invariance of the PES under translation, rotation, and permutation 
of identical atoms, which can be accomplished using scalar features. 
In recent years, there has been great interest in applying the concept 
of equivariance to MLIPs, particularly G-MLIPs. Equivariant G-MLIPs 
preserve how tensorial quantities change under coordinate transforma-
tions through the design of the input attributes and message-passing 
functions. For example, the neural equivariant interatomic potential 
(Nequip), a popular equivariant G-MLIP, uses the normalized relative 
position vectors projected onto a spherical harmonic basis as edge 
attributes and a geometric tensor product to combine the edge features 
with neighboring atomic features.

The primary advantage of equivariant G-MLIPs is that the relative 
position vectors between atoms can be used, which are more expressive 
than the scalar bond distances and angles used in invariant G-MLIPs. 
A series of benchmarks conducted on small molecular systems6 and 
a few bulk systems7 have found that equivariant G-MLIPs can achieve 
accuracy comparable to that of invariant G-MLIPs with substantially 
fewer training points. It should be stressed that these benchmarks 
have been carried out on a limited number of systems, and more recent 
studies do not seem to support that there is a substantial advantage 
to equivariant over invariant MLIPs, especially on bulk crystals8. An 
open challenge is a conclusive, preferably mathematically rigorous, 
demonstration of the advantages (or lack thereof) of equivariance 
over invariance in terms of performance on systems across diverse 
structures and chemistries.

Universal versus custom MLIPs
Most IPs (ML or traditional) are custom-fitted to a limited set of ele-
ments and structures of interest. This can be attributed to the unfavora-
ble combinatorial scaling of traditional and L-MLIP descriptors with 

http://www.nature.com/natcomputsci
http://materialsproject.org/


nature computational science

Comment

the main challenge in incorporating charges and magnetism into MLIPs 
lies not in the architectural developments but in the generation of train-
ing data and computational efficiency. Several effective approaches, 
such as charge equilibration schemes and spin-lattice G-MLIPs, have 
already been developed. However, training such MLIPs requires data 
sets that include charge and magnetic degrees of freedom, in addition 
to the coupled structural and chemical degrees of freedom, which mas-
sively increases the computational cost and complexity of data genera-
tion. Furthermore, the added complexity of incorporating electrostatic 
and magnetic interactions also tends to have a negative impact on the 
computational efficiency and scaling of the MLIPs, reducing the length 
and time scales to which they can be applied13. Practical algorithmic 
improvements are necessary to optimize the efficiency of such models, 
and MLIPs in general, to broaden the scope of their applicability.

Outlook
To conclude, MLIPs have had a transformative impact on materials 
science by providing a robust, automatable approach to parameterize 
the PES. MLIPs enable the simulation of materials at length and time 
scales beyond that accessible by ab initio methods, while reproducing 
near-ab initio accuracy. The recent advent of universal G-MLIPs has 
further expanded the scope of their application beyond studies of 
select chemistries to broad-based materials discovery. We are confi-
dent that continued advances in featurization, architectures and best 
practices will lead to MLIPs with improved accuracy, efficiency, and 
generalizability. However, an area that requires more attention from 
the community is the optimization of MLIP software implementations. 
MLIPs, in particular, G-MLIPs, are still orders of magnitude more com-
putationally expensive than traditional IPs, which can potentially limit 
the length and time scales to which they can be applied.

In our view, the main bottleneck for future MLIP development is 
ultimately the scarcity of PES data. Generating high-quality PES data, 
especially using state-of-the-art functionals, is the most expensive 
step in creating a MLIP. Existing materials databases were developed 
with a primary focus on property information for materials discovery 
and design; relatively little attention has been paid to the develop-
ment, curation, and dissemination of comprehensive PES data. The 
development of a findable, accessible, interoperable and reusable 

(FAIR)15 repository of PES data, as a complement to databases of IPs 
such as OpenKim, is therefore a critical priority for the community.  
A PES database should include not only typical PES information, but 
also auxiliary information such as charge densities, magnetic moments, 
and so on, derived from electronic structure calculations that may be 
utilized in future model development. It can serve as the foundation 
for developing common benchmarks for MLIPs, providing a standard-
ized dataset for training, testing and evaluating the computational 
efficiency of different MLIP architectures.
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