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With recent advances by industry, the

emergence of quantum computing at

a capability that surpasses the limits of
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classical computing is fast approach-

ing. An example of these advance-

ments is the superconducting qubit

technology developed at Google (as

seen in Figure 1). A key area where

quantum computing has been pre-

dicted to offer dramatic advances is in

applications to materials science and

quantum chemistry. Here there is a

close link between the natural system

and engineering quantum devices,

allowing for dramatic advances in what

can be simulated and how these sys-

tems can be understood. This subfield

has evolved rapidly over the past few

years with experimental demonstra-

tions and theoretical advances alike. A

broad perspective on this relationship

is laid out in a recent review article.1

Our natural instinct is to harness the

newly found and unprecedented prob-

lem-solving capabilities of quantum

computing and direct them toward the

defining challenges of our time. In this

Future Energy, we frame and explore

the opportunity of applying quantum

computing to energy storage. Here

we focus on computational materials

design of batteries as a specific example.
State of Current Methods for

Battery Modeling

The full promise of intermittent renew-

able energy technologies to displace

significant greenhouse gas emissions

requires large quantities of reliable

and cheap energy storage capacity to

come online at an accelerated pace.

While the recent advances in battery

technology and its scale of deployment

are encouraging, there is always

increasing demand to build safer and

lighter batteries, or find replacements

for materials that are in high demand

(e.g., cobalt).

At the same time, the performance and

cost of a battery are intimately tied to

the properties and integration of its

component materials (e.g., anode,

electrolyte, and cathode). Given these
r Inc.
design constraints, there has been

considerable interest in the use of

computational modeling to predict

better materials and designs for batte-

ries and energy storage, many of which

are based on the solution of Schrö-

dinger’s equation for the constituent

electrons.

Indeed, there are many research efforts

using quantum mechanical calculations

performed on classical computers to

inform solutions to the grand chal-

lenges at the forefront of sustainable

energy.2 Among the many approaches

to solving the Schrödinger equation,

density functional theory or ‘‘DFT’’3 cal-

culations are the most common. DFT

calculations have an impressive and

growing track record of accurate,

insightful predictions that have helped

guide the development of energymate-

rials in lithium-ion batteries, hydrogen

production and storage materials,

superconductors, photovoltaics, and

thermoelectrics, to name a few.4

For lithium-ion batteries,5 expert practi-

tioners have developed DFT-based

methods to calculate and predict

several properties critical to battery

operation with good resolution: equi-

librium cell voltages, voltage curves

(0 K and finite temperature), ionic

mobility, and thermal and electrochem-

ical stability. Knowing these properties

is often sufficient to evaluate and

screen for key battery performance

metrics, namely energy density,

charging and discharging time, safety,

and cycle life.

For all its success, however, the accu-

racy afforded by modern DFT methods

builds on a foundation of sophisticated

physical approximations and assump-

tions regarding the interaction of

electrons, most notably the choice of

the exchange-correlation functionals.

Naturally certain approximations

prove more accurate than others for
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Figure 1. Google’s Dilution Refrigerator

Superconducting qubits operate at near

absolute zero temperatures (10 mK), and

hence require multiple cooling stages. From

the top down, the different cooling stages are

4 K, 1 K, 100 mK, 10 mK. The quantum chip is

mounted on the bottom and is controlled via

microwave signals sent through

superconducting wires.
calculating certain properties or spe-

cific classes of materials or materials

systems, and there is already a healthy

debate stirring within the theoretical

chemistry community as to the overall

philosophical approach of developing

new functionals to ensure they are

physically sound and widely applicable.

As it stands, DFT’s effective implemen-

tation as a tool to develop battery

technology increasingly requires inter-

secting expertise in both computa-

tional electronic structure methods

(especially knowing their limitations) as

well as battery electrochemistry. While

DFT has performed admirably and is

an indispensable tool in any battery

researcher’s arsenal, several areas of

investigation critical to the advance-

ment of battery technology has pushed

beyond DFT’s limit. By navigating

around the methodological obstacles
inherent to DFT using a quantum

computing approach, there is the op-

portunity to open a window and shed

light upon previously unexplorable ma-

terials systems that are critical to the

operation of batteries.

We have focused here on DFT so far,

but do not wish to neglect mention of

other methods that have the potential

to overcome some of the challenges

of DFT. Alternative approaches such

as quantum Monte Carlo6 or tensor

network methods7 have an advantage

of systematic refinability over DFT,

and have been applied to material sys-

tems. However, the computational

cost of mitigating the sign problem or

storing explicitly the wave function or

a compressed version of it on a classical

device can make these methods pro-

hibitively expensive for material

systems of interest. In contrast, the

most advanced quantum algorithms

are expected to scale similarly to

DFT with accuracy reflecting exact

diagonalization. Recent developments

in classical machine learning attempt

to circumvent direct wave function

simulation,8,9 but these methods are

still in their early stages.

Promise of Quantum Computing for

Materials Simulation

Starting in 2005, researchers began to

speculate that quantumcomputers could

offer solutions to chemistry and material

problems that were otherwise inconceiv-

able on classical computers.10 In partic-

ular, they offered the opportunity to

provide essentially exact solutions to

chemistry problems for a cost similar

to that of simpler approximate methods

on classical computers. These methods

would be free of the errors and ambigu-

ities present in current methods, and

perhaps more importantly would negate

the need for domain knowledge required

to effectively utilize currentmethods such

as DFT. While quantum methods do uti-

lize somedomain knowledge in theprep-

aration of initial states, this can be more

readily baked in as it depends only on
the Hamiltonian and not on the folklore

surrounding one functional or another.

Said in another way, it would help to

democratize the use of computational

simulations of materials, especially when

quantum computing is made broadly

available as a cloud service assisted by

open-source, domain-specific software

packages such as OpenFermion.11

Moreover, these computers open pos-

sibilities that have few to no current

analogs in classical simulation. They

are able to efficiently simulate the com-

plex dynamics of strongly correlated,

excited state, and complex interfacial

systems that are necessary to achieve

an accurate simulation of modern de-

vices such as solar cells, batteries, and

energy networks. Dynamics in these

regimes offer a microscopic view of

these systems that experiments cannot

presently dream of, at an accuracy not

currently possible with today’s simula-

tion techniques. These insights have

the potential to change the design

landscape for many of these materials.

Challenges of Quantum Computing

While the promise of quantum com-

puting is immense, so are the chal-

lenges faced by those developing these

devices. In particular, today’s systems

are limited, in terms of both number of

entangled qubits and fidelity, which in

turn dictate the number of quantum

operations one can perform on the de-

vice. Progress is being made toward

truly ‘‘fault-tolerant’’ quantum com-

puters, which yield an unlimited num-

ber of quantum operations, bound

only by one’s patience; however, these

machines may not emerge for a number

of years. In the meantime, researchers

are working hard to develop better

ways to utilize the pre-fault-tolerant

machines expected to be present in

the near term.

Many expect that in a parallel to clas-

sical computing, the best algorithms

will likely be developed with the aid of

quantum computers themselves. For
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Figure 2. Cartoon Schematic of the Progress of Quantum Algorithms as a Function of the Year

The asymptotic time required on a 100-MHz quantum processor to measure the energy of a state to

a fixed precision for a 128 orbital system, constructed loosely on the bounds from Table I in

Babbush et al.,17 is shown. Asymptotic time is a caricature designed to illustrate algorithmic

progress in coarse terms only, and assumes a number of factors to make its depiction, such as unit

pre-factors, target precision, and overlaps with target states. It is designed to show the rapid trend

of progress and not to provide accurate estimates of the gate counts or physical time.
this reason, many early devices will be

made available through remote or

cloud services designed to allow algo-

rithm designers to access these early

devices, and bridge the gap to fault-

tolerant machines.

While fault-tolerant machines are still

some years away, there have still been

many advances in algorithms for these

machines. Through careful mathemat-

ical analysis, one can precisely bound

the costs of running these machines

for problems within chemistry and

optimization. In 2013, the best algo-

rithm bounds had a scaling factor of

around O(n11) for gates as a function

of orbitals.12 However, algorithmic

triumphs reduced that number to closer

to O(n6) within a year, and more

recently reduced the expected asymp-

totic cost of running exact chemistry

simulations on a quantum computer to

costs comparable with running a hybrid

DFT computation on a classical com-

puter, or a depth closer to O(n3).13

However, due to the advanced nature

of current classical simulation methods,

the current lower end of a ‘‘useful’’
812 Joule 2, 810–813, May 16, 2018
quantum computer for quantum chem-

istry in a system that can simulate is

estimated to be �128 orbitals by the

authors. This orbital number is loosely

based on a comfortable margin from

one of the largest numerically exact

treatments of non-trivial active spaces

in chemical systems, which successfully

treated 72 spin orbitals using density

matrix renormalization group in both

ground and low-lying excited states14

and estimates for the FeMoco complex,

which predict a useful active space at

114 spin orbitals.15 This means that to

simulate interesting compounds, if

one made very coarse estimates based

only on rough bounds, only 3 years

ago one might have expected to

execute more than 1012 gate layers (as

seen in Figure 2); however state-

of-the-art algorithms have reduced

these estimates to closer to 106. While

current hardware is expected to admit

on the order of 102–103 layers of gates,

assuming the progression of algorithms

and hardware continue to advance at

the current pace we may see algorithms

that work on pre-fault-tolerant devices

for certain ‘‘useful’’ quantum simula-

tions. Indeed it has been speculated
that hybrid quantum-classical algo-

rithms, such as the variational quantum

eigensolver,16 and their inherent

robustness to errors may help pre-

fault-tolerant devices reach interesting

regimes earlier than expected.

Addressing Selected Challenges in

Battery Modeling

As a tool to characterize and design

battery systems, one can envision

quantum computing approaches would

first be used to complement DFT’s

strengths and shortcomings. DFT can

run into difficulty in modeling systems

and processes involving large varia-

tions in electronic structure. For

example, computing the properties of

molecules, metals, or oxides with

accuracy each requires different ex-

change-correlation functionals or DFT

extensions. In contrast, a quantum

computer addresses the basic physics

without approximation, apart from mi-

nor discretizations that need not be

tailored on a system-by-system basis.

At the same time, the underlying phys-

ical processes at the heart of battery

operation occur at the electrochemi-

cally active interfaces of materials with

very different electronic structure. In

Li-ion batteries, a defining example is

the solid electrolyte interphase (SEI)

that forms between the anode (a

conductive solid, Li metal or graphite)

and non-aqueous liquid electrolyte dur-

ing cycling. The SEI itself is a complex

assortment of inorganic compounds

and organic and polymeric species,

which plays a crucial role in providing

electrochemical stability during battery

operation, but is notoriously difficult to

characterize. The complex reaction

paths involved in its formation remain

only coarsely resolved, and expert

DFT practitioners readily acknowledge

the challenge and accuracy limitations

of their approach.18 Studying this

problem on a quantum computer, one

could simulate the exact dynamics

of the system, which need not suffer

from limitations related to accurate



representations of electronic excited

states and/or classical nuclei that

might hamper descriptions of proton

transport.

A particularly egregious failure of current

DFT exchange-correlation functionals is

in reactions involving significant elec-

tronic structure changes in a molecular

species, which are especially relevant in

cutting-edge Li-O2 and Li-S batteries

that hold the potential for achieving

much higher energy densities compared

with Li-ion. In Li-O2 batteries, for

example, O undergoes a change from a

covalent double bond in molecular

O=O, to O2
2� in Li2O2 and finally to

O2� in Li2O. While simple empirical ap-

proaches such as fitting a constant

correction to account for the O2 binding

energy error and self-interaction error

have been developed for main group

oxide formation energies,19 such ap-

proaches become much less reliable for

peroxide and superoxide species for

which reliable experimental data are

much more difficult to come by. These

have limited progress on fundamental is-

sues such as whether an intermediate su-

peroxide (O2
�) species can be stabilized

relative tomolecularO2 andLi2O2 (similar

to the Na-O2 system), and the likely

candidate crystal structures for LiO2.

Although these are but a few of the

many technical impediments (including

control of surface reactivity, suppression

of dendrite formation, etc.) to the com-

mercial viability of Li-O2 batteries, they

are nevertheless important questions

that highly accurate quantum computer

simulationsmaypotentially help address.

Conclusion

Although quantum computing is in its

early days, the potential impact that it

can have on energy storage warrants

further investigation and research. Due

to the known limitations of current com-

putational chemistry techniques, quan-

tum-based computational chemistry

techniques may help better elucidate

material properties more accurately and
ultimately help the industry to designbet-

ter batteries.
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