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Accelerating materials discovery with
Bayesian optimization and graph deep
learning
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Machine learning (ML) models utilizing structure-based features provide an efficient means for
accurate property predictions across diverse chemical spaces. However, obtaining equilibrium crystal
structures typically requires expensive density functional theory (DFT) calculations, which limits
ML-based exploration to either known crystals or a small number of hypothetical crystals. Here, we
demonstrate that the application of Bayesian optimization with symmetry constraints using a graph
deep learning energy model can be used to perform “DFT-free” relaxations of crystal structures. Using
this approach to significantly improve the accuracy of ML-predicted formation energies and elastic
moduli of hypothetical crystals, two novel ultra-incompressible hard MoWC, (P6;/mmc) and ReWB
(Pca2,) were identified and successfully synthesized via in situ reactive spark plasma sintering from
screening 399,960 transition metal borides and carbides. This work addresses a critical bottleneck to
accurate property predictions for hypothetical materials, paving the way to ML-accelerated discovery
of new materials with exceptional properties.

Keywords: Materials discovery; Bayesian optimization; Graph neural network; Deep learning

1. Introduction

The accurate prediction of novel stable crystals and their
properties is a fundamental goal in computation-guided materi-
als discovery. While ab initio approaches such as density func-
tional theory (DFT) [1,2] have been phenomenally successful in
this regard [3-6], their high computational cost and poor scala-
bility have limited their broad application across vast chemical
and structural spaces. As a result, high-throughput DFT screening
has been mostly performed on ~ O(100 — 1000) crystals with
relatively small unit cells.

To circumvent this limitation, machine learning (ML) has
emerged as a new paradigm for developing efficient surrogate
models for predicting materials properties at scale [7-12]. Such
ML models are usually trained on large databases of materials
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properties [13-15] to learn the relationship between input
chemical and/or structural features and target properties (e.g.,
formation energies, band gaps, elastic moduli, etc.). Only ML
models utilizing structural as well as chemical features can distin-
guish between polymorphs and be universally applied in materi-
als discovery across diverse crystal structures. In particular, graph
neural networks, where atoms and bonds in crystals are repre-
sented as nodes and edges in a mathematical graph, have
emerged as a particularly promising approach with state-of-the-
art accuracy in predicting a broad range of energetic, electronic
and mechanical properties [16-23]. For instance, Bartel et al.
[24] has recently shown that while composition-based ML mod-
els generally do not achieve sufficient accuracies in energies to
predict stability, structure-based ML models such as crystal graph
convolutional neural network (CGCNN) [18] can achieve the
necessary accuracies for stability evaluations.
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Ironically, a critical bottleneck in the application of structure-
based ML models for materials discovery is the requirement for
equilibrium crystal structures as the inputs. These are obtained
by “relaxing” initial input structures along their potential energy
surfaces, which are typically computed via expensive DFT calcu-
lations. While there have been recent efforts [25,26] at deriving
accurate interatomic forces from graph representations, the
application has been limited to a few molecular systems or con-
strained chemical spaces.

Here, we propose a Bayesian Optimization With Symmetry
Relaxation (BOWSR) algorithm to obtain equilibrium crystal
structures for accurate ML property predictions without DFT.
Utilizing a highly efficient MatErials Graph Network (MEGNet)
formation energy model [16], we demonstrate that BOWSR-
relaxed structures can serve as accurate inputs to ML property
models, yielding far higher accuracy in the prediction of various
materials properties. Finally, we demonstrate the power of this
approach by screening ~400,000 transition metal borides and
carbides for ultra-incompressible hard materials. Two new mate-
rials with relatively low predicted energies above hull [27] were
successfully synthesized and demonstrated to have exceptional
mechanical properties, in line with the ML prediction.

2. Results

2.1. Bayesian optimization with symmetry relaxation algorithm
Bayesian optimization (BO) is an adaptive strategy for the global
optimization of a function. In crystal structure relaxation, the
function to be optimized is the potential energy surface, which
expresses the energy of the crystal as a function of the lattice
parameters and atomic coordinates. In the BOWSR algorithm,
the symmetry (space group) of the lattice and the Wyckoff posi-
tions of the atoms are constrained during the relaxation process,
i.e., only the independent lattice parameters and atomic coordi-
nates are allowed to vary. The BO goal is then the minimization
of the following mapping:

x:={a,b,c,o,p,7,c1,¢,...} 1)

Xopt = argmin U(x),U : R" — R (2)
X

where {a, b, c,a, 8,7y} and {c1,¢3, . . .} represent the independent lat-
tice parameters and the atomic positions for a P1 crystal, respec-
tively, and U(.) is the energy of the system. The schematic of
the BOWSR algorithm as well as two examples of the geometry
parameterization for a high-symmetry cubic crystal and a low-
symmetry triclinic crystal are shown in Fig. 1.

The convergence accuracy and speed of the BOWSR algorithm
are set by the energy evaluator U(.), which can be any computa-
tional model, including ab initio methods, empirical potentials,
and surrogate ML models. In this work, we have elected to use
a MEGNet formation energy model previously trained on the
DFT-computed formation energies of 133,420 Materials Project
crystals [13]. This MEGNet model has a cross-validated mean
absolute error (MAE) of 26 meV atom ™, which is among the best
accuracy among general ML models thus far [22,18]. Compar-
isons between different energy evaluators are demonstrated in

the next section. Examples of the convergence of the BOWSR
algorithm using the MEGNet energy model are shown in Fig. S1.

2.2. Properties prediction

Elemental substitution is a common, chemically intuitive
approach to deriving potential new compounds. For instance,
the rock salt LiCl can be derived from rock salt NaCl by substitut-
ing Na for the chemically similar Li. Here, we demonstrate the
potential for BOWSR to substantially enhance ML property pre-
dictions of the formation energies and elastic moduli (bulk and
shear moduli) of substituted crystals. The dataset comprises a
total of 12,277 and 1,672 unique crystals with pre-computed
DFT formation energies and elastic moduli, respectively, from
the Materials Project [13]. These crystals belong to 144 (35 bin-
ary, 91 ternary, and 18 quaternary) common structure proto-
types in the Inorganic Crystal Structure Database (ICSD)
[28,29]. Each prototype comprises at least 30 compositions (sta-
tistical distribution shown in Fig. S2). For each crystal in the data-
set (e.g., rock salt GeTe), another crystal with the same prototype
but a different composition (e.g., rock salt NaCl) was selected at
random and elemental substitutions (Na—Ge, Cl—Te) were per-
formed to arrive at an “unrelaxed” structure. The BOWSR algo-
rithm was then applied to obtain a BOWSR-relaxed structure. It
should be noted that relative to the unrelaxed crystals, the
BOWSR-relaxed crystals have volumes that are much closer to
the corresponding DFT-relaxed crystals, as shown in Fig. S3.
The unrelaxed, BOWSR-relaxed, and the original DFT-relaxed
structures were then used as inputs for property predictions using
MEGNet models. These MEGNet models were trained on the
DFT-computed formation energies and elastic moduli (bulk mod-
ulus Kyrp and shear modulus Gygy) of 133,420 and 12,179 crys-
tals, respectively, from the Materials Project.

Fig. 2 compares the MEGNet model predictions using the
unrelaxed, BOWSR-relaxed, and DFT-relaxed structures as
inputs with respect to DFT-computed values. The mean abso-
lute errors (MAEs) of the MEGNet models using the DFT-
relaxed structures provide a best-case performance baseline. It
should be noted that the MEGNet models were trained using
a superset of data from the Materials Project that includes
the DFT-relaxed structures [13]. Hence, the reported MAEs of
MEGNet predictions using DFT-relaxed structures in this work
are much smaller than the previously reported MAEs of these
MEGNet models from cross-validation and should not be con-
sidered as a metric for MEGNet performance. Using the unre-
laxed structures as inputs results in much higher, positively
skewed MAEs in the MEGNet formation energy prediction
compared to using DFT-relaxed structures. This is because the
unrelaxed structures have lattice parameters and atomic posi-
tions that can deviate substantially from the ground state
DFT-relaxed structures, resulting in higher energies. Using the
BOWSR-relaxed structures as inputs reduces the MAEs by a fac-
tor of four, from 363 meV atom~! to 88 meV atom™!. The R®
also substantially increases from 0.67 to 0.96, and the error
distribution is Gaussian-like with a mean close to O. Similarly,
large improvements in the MEGNet predictions of the elastic
moduli are also observed using the BOWSR-relaxed structures
compared to using unrelaxed structures, with MAEs in the
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FIG. 1

Bayesian Optimization With Symmetry Relaxation (BOWSR) algorithm. a, The BOWSR algorithm parameterizes each crystal based on the independent lattice
parameters and atomic coordinates based on its space group. The potential energy surface is then approximated by initializing a set of training observations
and energies from the ML energy model. Bayesian optimization is then used to iteratively propose lower energy geometries based on prior observations. b,
Two examples of the geometry parameterization for cubic perovskite SrTiO; and triclinic PdN,Cj,. For the high-symmetry cubic perovskite, the lattice
parameter a is the only independent parameter, and all atoms are in special Wyckoff positions with no degrees of freedom in the fractional coordinates. For
the triclinic crystal, all six lattice parameters and all atomic coordinates are independent parameters.

log,,Kvru and log,,Gvra reducing by half. We tested the
sensitivity of the BOWSR algorithm to the initial structures
used to perform elemental substitution. Using four randomly
chosen parent structures with different lattice parameters for
each prototype, the above procedures were repeated and the
results are shown in Fig. S4. The BOWSR-relaxed structures
exhibit consistently low errors regardless of initial structure
selection.

We tested the sensitivity of the BOWSR algorithm to the accu-
racy of the energy evaluator by artificially introducing Gaussian
noise into the MEGNet formation energy prediction. The energy
errors from the BOWSR-relaxed structures are linearly correlated
with the errors of the surrogate ML model with the root mean
square error (RMSE) ranging from 27 to 1000 meV atom™!
(Fig. S5), which indicates the robustness of the BO propagation
and the broad applicability of the BOWSR algorithm to any
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Performance of MEGNet materials properties predictions for three levels of relaxation. Three levels of relaxation are served as inputs for MEGNet materials
properties predictions — unrelaxed, BOWSR-relaxed, and DFT-relaxed structures. a, b, and ¢ show the parity plot of MEGNet prediction on formation
energies, bulk moduli, and shear moduli, respectively. d, e, and f show the errors distribution on the corresponding materials property.

surrogate ML models. The same linear correlations are also
observed between the elastic moduli errors and the errors of
the surrogate ML model, as shown in Fig. S5c and S5d. We have
also tested the effect of different energy evaluators with different
accuracies, including DFT and a composition-based ML model
(Magpie + XGBoost model [30,24,31]). As shown in Fig. S6, the
DFT energy evaluator yields the lowest MAEs. In fact, the MAE
in MEGNet-predicted formation energy for the DFT energy eval-
uator is comparable to that of the MEGNet formation energy
model itself, providing further evidence that the BOWSR algo-
rithm performs similarly to typical relaxation algorithms used
in DFT calculations. The MAEs using the composition-based
Magpie + XGBoost energy evaluator are the largest. In particular,
the MAE in MEGNet-predicted formation energies is unaccept-
ably large (384 meV atom ), rendering it useless for stability pre-
dictions. The MEGNet energy evaluator yields MAEs that are
much closer to using a DFT energy evaluator, and more crucially,
the errors in MEGNet-predicted formation energies are centered
around zero.

2.3. Discovery of ultra-incompressible hard materials

We used the BOWSR algorithm with the MEGNet models to
rapidly screen hundreds of thousands of candidates for novel
ultra-incompressible hard materials, as shown in Fig. 3. Given
that binary compounds have already been extensively explored
in the literature [32,33], we targeted our search in 12 ternary
M;M;,’Xz chemical spaces, where M, M”" = Mo, W, Os, or Re
and X =B or C. These elements were selected based on their com-
mon occurrences in ultra-incompressible hard binary com-
pounds. By combinatorially applying elemental substitutions to
5,555 ternary structures prototypes in the ICSD [28,29],
399,960 candidates were generated and relaxed using the
BOWSR algorithm with the MEGNet energy model. The

BOWSR-relaxed candidates were then screened for stability and
mechanical properties using MEGNet property models. The sta-

EMEGNet

bility metric used was the energy above hull E, ;"“, which was

computed using the predicted formation energy EMN with
the 0 K phase diagram in the Materials Project database
[27,13,34]. At this intermediate stage, a relatively generous
threshold of EMEGN® < 100 meV atom ™! was used to obtain can-
didates that are likely to be thermodynamic stable [35]. Of these,
candidates with relatively high MEGNet-predicted bulk and
shear moduli (K{as™* > 250 GPa and Gipg " > 100 GPa) were
identified. Similar to the stability criterion, the mechanical crite-
ria used are slightly lower than the conventional threshold for
ultra-incompressibility to account for the higher MAE of the
MEGNet elastic moduli predictions [33]. DFT relaxations and
energy calculations were then carried out on the 1,603 candi-
dates that passed all three ML-based screening criteria. Subse-
quently, expensive DFT elastic tensor calculations [36] were
performed on the 143 candidates that have DFT
EP'N < 100 meV atom ™.

Table 1 summarizes the computed elastic properties of the top
ten candidates with the highest computed bulk modulus
together with other well-known ultra-incompressible materials.
Attempts were then made to synthesize all ten candidates with
eight unique compositions via in situ reactive spark plasma sin-
tering (SPS) using elemental precursors in the appropriate ratios
(see Methods). Two crystals, MoWC, (P6;/mmc) and ReWB
(Pca2,), were successfully synthesized and confirmed via X-ray
diffraction (XRD, Fig. 4a) as single phase, while the synthesis of
the other six compositions yielded multiple phases (see
Figs. S7-S12). Henceforth, we will refer to the two novel phases
of MoWC, (P63/mmc) and ReWB (Pca2;) simply as MoWC,
and ReWB, respectively.
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FIG. 3

Flowchart of ultra-incompressible materials discovery leveraged by the
BOWSR algorithm and MEGNet models. The materials candidates were
generated by elemental substitution to structure prototypes. These candi-
dates were relaxed by the BOWSR algorithm and subsequently screened by
their predicted thermodynamic stability and mechanical properties. The
screened candidates were further verified by DFT calculations, and the high-
ranked candidates were directed to synthesis attempts. Quantity in the
parenthesis shows the number of candidates at each stage.

The mechanical properties of MoWC, and ReWB were mea-
sured using the pulse-echo method [39,40]. As shown in Fig. 5a
and b, the experimentally-measured bulk and shear moduli are
in excellent agreement with both the MEGNet and DFT predic-
tions. Both new materials exhibit ultra-incompressibility, with
bulk modulus close to or larger than 300 GPa [33]. MoWC,; also
exhibits high estimated Vickers hardnesses H, of 36.6 at 0.49 N
indentation load and 20.9 GPa at 9.8 N load (Fig. 5c). ReWB
has a comparatively lower measured hardness of 29.5 at 0.49 N
load and 17.6 GPa at 9.8 N load. The H, values at 0.49 N load
are within 20-25% of those derived from the MEGNet and DFT

predicted shear moduli via the empirical relation H, = 0.151G
[38], as shown in Fig. 5d.

3. Discussion

Many materials properties, such as formation energies, mechan-
ical properties, etc., exhibit a strong dependence on the crystal
structure. However, obtaining equilibrium crystal structures as
inputs to accurate ML models still requires expensive ab initio
computations. By coupling an accurate MEGNet energy model
with Bayesian optimization of symmetry-constrained parame-
ters, we demonstrate that the new algorithm can reasonably
approximate equilibrium structures. The resulting substantial
improvements in ML property predictions enable the rapid
screening of ~400,000 candidate crystals for stability and excep-
tional mechanical properties, 10°~10* orders of magnitude larger
than that accessible by high-throughput DFT calculations.

The effectiveness of the BOWSR algorithm is limited by the
accuracy of the energy evaluator (Fig. S6). While the MEGNet for-
mation energy model has been selected in this work, we foresee
that the future development of more accurate ML energy models
may improve the quality of the BOWSR-relaxed structures, and
subsequent ML property predictions, even further. Here, the
search for ultra-incompressible materials has been chosen as a
model problem due to the high cost of acquisition of elastic mod-
uli via standard DFT approaches, but the approach outlined can
be readily extended to any property for which a reliable ML
model can be developed. It should be noted, however, that there
is an inverse relationship between the cost of acquisition and the
training data size; hence, datasets on expensive properties (e.g.,
elastic moduli, optical properties, etc.) tend to be much smaller
in size compared to cheaper properties, making it more difficult
to build reliable ML models for high-cost properties. While
approaches such as transfer learning or multi-fidelity models
have been shown to mitigate this trade-off to some extent
[16,17,41,42], the generally higher errors in ML models for
high-cost properties should be factored into the screening pro-
cess in the thresholds.

Finally, we note that an alternative approach is to obtain
atomic forces and stresses by differentiating the energies with
respect to atomic positions. We have tested this approach using
the MEGNet energy model with the traditional Limited-memory
Broyden-Fletcher-Goldfarb-Shanno (L-BFGS) optimization algo-
rithm to relax structures. As can be seen from Table S2, the MAEs
of the MEGNet predicted formation energies and elastic moduli
are the highest for the L-BFGS approach. We believe that the
MEGNet energy model are not sufficiently accurate to obtain reli-
able atomic forces via differentiation. Typically, models for accu-
rate energies and forces, e.g., interatomic potentials, include
well-converged forces in the training data.[43]. However, such
training data is not readily available for the diverse structures
and chemistries studied in this work. The key advantage of the
BOWSR approach is that it requires energy evaluations only,
and our work has in fact shown that it performs similarly to a
direct relaxation approach. We have also validated the BOWSR
approach using alternative ML property models based on
CGCNN and found a similar twofold reduction in the MAEs in
predicted energies and elastic moduli, as shown in Fig. S13.
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TABLE 1

DFT-computed bulk modulus (Kygy), shear modulus (Gyry), Young's modulus (Evgy), Poisson’s ratio (v) and energy above hull (Ey,) for the top 10
candidates with regard to Ky in descending order. MoWC2 and ReWB are bolded as they are successfully synthesized by experiments. Some of the
known ultra-incompressible materials are used as references.

Kyry (GPa) Gvyru (GPa) Evyry (GPa) v Epun (meV atom")
Candidates
= ReOsB (P6m2) 370.7 2413 594.7 0.233 31.7
ﬁ ReOsB, (P63 /mmc) 367.3 2209 552.0 0.250 87.8
= MoWC, (P63/mmc) 357.9 260.5 628.8 0.207 96.3
T ReWB (Fddd) 356.8 176.9 4555 0.287 20.6
o Re1sWB, (P6m2) 353.1 177.0 4551 0.285 88.4
Q@ ReWB (Pca2l) 352.6 144.1 380.4 0.320 33.1
3 OsWB (Pbam) 351.1 183.1 467.9 0.278 433
] ReWB (Crmce) 350.9 161.5 420.1 0.301 32,6
o ResW-Bg (P6/m) 348.4 182.8 466.8 0.277 222
S ReW,B, (P4/mbm) 345.8 156.0 406.8 0.304 72.1
=
Known materials
C (Fd3m) 4303 503.6 1086.9 0.079 136.4
WC (P6m2) 389.8 280.0 677.8 0.210 1.1
BN (F43m) 370.1 382.8 852.4 0.116 77.3
ReB, (P63/mmc) 3349 2723 642.7 0.180 47
(a) (b)
Pca21 - ReWB

Experimental ReWB MEGNet Enui:

Mwuﬁ

6 meV atom™!

(121)
5 Calculated ReWB
. O Re
S (002) @11
: (330)
= (119 @00 (2(32)0) a1 o ow
= | | i { : J lil P63/mmc - MoWC2
2 L e © Mo MEGNet Enul: 7 meV atom™!
2 Experimental MoWC2

LJLJO)A(LJ Jo o] oc

(10- 10-14)
1 Calculated MoWC2

[ 0’0 4) (10-18
‘ 1012 2-1-10) (2 -1‘-1 4),

20 30 40 50 60 70 80
26(°)

FIG. 4

Two new materials proposed by the BOWSR algorithm and MEGNet prediction confirmed by XRD characterizations. a, Measured and calculated XRD patterns
of two materials (ReWB and MoWG,). The major peaks are indexed for reference. The pymatgen library [37] was used to calculate the XRD patterns of the DFT-
relaxed crystal structures. Minor shifts in peak positions between the measured and calculated XRD patterns can be attributed to the systematic errors
between DFT and experimentally-measured lattice parameters. The comparison in lattice parameters between BOWSR-relaxed, DFT-relaxed, and
experimental structures is shown in Table S1. b, Crystal structures and space group of these two materials. The predicted energy above hull for ReWB and
MoWGC, are 66 and 7 meV atom ™, respectively.
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Experimental measurements and theoretical prediction of mechanical properties for the new materials. Comparisons of a, bulk moduli and b, shear moduli
between MEGNet, DFT and pulse-echo measurements. ¢, Measured Vickers microhardness of ReWB and MoWC, under loads ranging from 0.49 N to 9.8 N. d,
Comparisons between the hardness derived from MEGNet predicted bulk modulus and shear modulus [38] and the hardness measured by Vickers
indentation at the low load (0.49 N). The DFT calculated results are referenced. The error bar represents the standard deviation of multiple experimental

measurements.

4. Material and methods

4.1. Bayesian optimization with symmetry relaxation algorithm
Geometry relaxation of a crystal structure requires the optimiza-
tion of up to 3N + 6 variables — six lattice parameters and three
fractional coordinates for each of the N atoms. By constraining
the symmetry to remain unchanged during relaxation can
reduce the number of independent variables considerably [44-
46]. The open-source spglib [47] package was used for symmetry
determination. The search for optimized symmetry-constrained
lattice parameters and atomic coordinates that minimize the
total energy was then carried out via Bayesian optimization
(BO). The changes in the variables were used as the optimization
inputs to reduce the tendency of the BO process being domi-
nated by parameters with large magnitudes. This approach has
been previously used for geometry optimization along the imag-
inary phonon modes [46].

Using a Latin hypercube sampling, a set of training observa-
tions D ~ {(x;, U(x;)) i = 1 : m} were initialized, where the x; are
the m independent lattice parameters and atomic coordinates
and U(.) is the energy of the corresponding structure evaluated
by the surrogate model (see Egs. (1) and (2)). The BO strategy
comprises two steps [48]:

1. A Gaussian process (GP) model is trained on the initialized
training observations D to approximate the U(x). The Rational
Quadratic kernel [49] is adopted as the covariance function of
GP. The noise level of GP model is set to the root mean square
error (RMSE) of the energy model.

2. The acquisition function that balances the exploitation and
exploration is calculated for samples in the search space apart
from the training observations and the candidate with opti-
mal acquisition function is proposed to be evaluated (forma-
tion energy prediction by surrogate ML model). Exploitation
represents the samples with high predicted mean from the
GP, and exploration accounts the samples with high predic-
tive uncertainty [50-52]. Here, we chose the expected
improvement as the acquisition function, which can be ana-
lytically expressed as [53,54]:

E[I(x)] = (u(x) =U(x") = &) - ©(Z) + o(x) - $(2) (3)
and
x* = argmax U(x;) (4)
i=1,...n
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where u(x) and o(x) are the mean and standard deviation of
the posterior distribution on x from the GP, respectively, and
®(x) and ¢(x) are the cumulative distribution function (CDF)
and probability density function (PDF), respectively. The ¢
parameter can be tuned to balance the trade-off between the
first term (exploitation) and the second term (exploration) in
Eq. (3). Until the maximum number of iteration steps is
reached, the sample with optimal acquisition function was
iteratively augmented to the training observations and used
to update the GP surrogate model in the next loop.

It should be noted that by removing the symmetry constraint,
i.e., treating all crystals as having triclinic P1 symmetry, the
BOWSR-NoSymm yields much higher errors (see Fig. S14) than
BOWSR. This can be attributed to the limitation of BO in opti-
mizing the high dimensional parameter space that scales linearly
with the number of atoms in crystals without symmetry. In this
work, the number of initialized training observations and the
maximum number of iterations were both set at 100 to achieve
the best trade-off between accuracy and efficiency (see Fig. S14).

4.2. Materials graph network models

The Materials Graph Network (MEGNet) models used in this
work are based on the same architecture as our previous work
[16]. Briefly, three graph convolutional layers with [64, 64, 32]
neurons were used in each update function, and the shifted soft-
plus function was used as the non-linear activation function. A
set2set readout function with two passes was used after the graph
convolution steps. The cutoff radius for constructing the neigh-
bor graph was 5 A. The MEGNet formation energy (E) and elas-
ticity (Kvgn and Gvra) models were trained using the 2019.4.1
version of Materials Project database [13] containing 133,420
structure-formation energy and 12,179 structure-bulk/shear
modulus data pairs. Each dataset was split into 80%:10%:10%
train:validation:test ratios. During the model training, we used
a batch size of 128 structures, and set the initial learning rate
to 0.001 in the Adam optimizer. All models were trained for a
maximum of 1500 epochs with an early stopping callback, which
terminates the model training if the validation error does not
reduce for 500 consecutive steps. The mean absolute errors
(MAEs) of Ef,log;,(Kyru) and log;,(Gvry) models in test data
are 26 meV atom™!, 0.07, and 0.12, respectively.

4.3. Elemental substitution

The elemental substitution is performed by taking a crystal struc-
ture with known chemistry and substituting the elements with
target elements within the structure. For example, an unrelaxed
rock salt GeTe can be obtained from elemental substitution to
the rock salt NaCl using Ge and Te as target elements. Unlike
the ionic substitution in previous works[55,56], elemental substi-
tution exhibits no constraint of charge neutrality and thus can
be used for exploring hypothetical materials in a broader range,
such as intermetallics and covalent systems.

4.4. DFT calculations

The DFT relaxations, energy and elastic tensor calculations for
the small number of candidates that passed the ML screening
were carried out using Vienna ab initio simulation package

(VASP) [57] within the projector augmented wave approach
[58]. The exchange—correlation interaction was described using
the Perdew-Burke-Ernzerhof (PBE) generalized gradient approxi-
mation (GGA) [59] functional for structural relaxations and
energy calculations. The plane wave energy cutoff was set to
520 eV, and the k-point density of at least 1,000 per number of
atoms was used. All structures were relaxed with energies and
forces converged to 107> eV and 0.01 eV/A, respectively, consis-
tent with the calculation setting used in the Materials Project
[13]. The elastic tensor calculations were performed using the
procedure described in previous work [36]. A tighter energy con-
vergence criterion of 1077 eV was used, and strains with magni-
tude of (-1%, —0.5%, 0.5%, 1%) were applied to each of the 6
independent components of strain tensor.

4.5. Synthesis
Bulk specimens of candidates ReOsB, ReOsB2, MoWC,, ReWB,
Re;3WB9, OsWB, RegW;Bg, and ReW,B, were synthesized via
in situ reactive spark plasma sintering (SPS). Elemental powders
of Mo, W (>99.5% purity, ~325 mesh, Alfa Aesar), Re
(~99.99% purity, ~325 mesh, Strem Chemicals), Os (~99.8%
purity, ~200 mesh, Alfa Aesar), boron (~99% purity, 1-2 um,
US Research Nanomaterials), and graphite (~99.9% purity, 0.4—
1.2 pm, US Research Nanomaterials) were utilized as precursors.
For each composition, stoichiometric amounts of elemental
powders were weighted out in batches of 5 g. The powders were
first mixed by a vortex mixer, and then high energy ball milled
(HEBM) in a Spex 8000D mill (SpexCertPrep) by tungsten carbide
lined stainless steel jars as well as 11.2 mm tungsten carbide
milling media (ball-to-powder ratio ~ 4.5:1) for 50 min. 0.05 g
or ~1 wt% of stearic acid was used as lubricant in the milling pro-
cess. After HEMB, the as-milled powder mixtures were loaded
into 10 mm graphite dies lined with graphite foils in batches
of 2.5 g, and subsequently consolidated into dense pellets via
SPS in vacuum (< 1072 Torr) by a Thermal Technologies 3000
series SPS machine. The HEBM and powder handing were con-
ducted in an argon atmosphere (with O, level <10 ppm) to pre-
vent oxidation.

During the SPS, specimens were initially heated to 1400 °C at
a rate of 100 °C/min under constant pressure of 10 MPa. For the
final densification, the temperature was subsequently raised at a
constant rate of 30 °C/min to a final isothermal sintering temper-
ature, which was set at different levels for different target compo-
sitions—1800 °C (ReWB), 1700 °C (MoWC2 and RegW;By),
1600 °C (Re;3sWBy and ReW,B,), or 1500 °C (ReOsB, ReOsB,,
and OsWB), and maintained isothermally for 10 min. Mean-
while, the pressure was increased to 50 MPa at a ramp rate of
5 MPa/min. The final densification temperature was optimized
for each specimen to achieve a high relative density while pre-
vent specimen melting due to overheating. The in situ reactions
between elemental precursors likely took place during the initial
temperature ramping. After sintering, the specimens were cooled
down naturally inside the SPS machine (with power off).

4.6. Experimental characterization

Sintered specimens were first ground to remove the carbon-
contaminated surface layer from the graphite tooling, and pol-
ished for further characterizations. X-ray diffraction (XRD) exper-
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iments were conducted using a Rigaku Miniflex diffractometer
with the Cu Ko radiation at 30 kV and 15 mA. The Vickers micro-
hardness tests were carried out on a LECO diamond microinden-
tor with loading force varying from 0.49 N (50 gf) to 9.8 N (1 kgf)
and constant holding time of 15 s, abiding by the ASTM Standard
C1327. Over 20 measurements at different locations were con-
ducted for each specimen at each indentation load to ensure sta-
tistical validity and minimize the microstructural and grain
boundary effects. In particular, over 30 measurements were con-
ducted for each specimen at 9.8 N indentation load.

The Young’s and shear moduli of the specimens were calcu-
lated from the ultrasonic velocities measured with a Tektronix
TDS 420A digital oscilloscope, following the ASTM standard
A494-15. Multiple measurements were conducted at different
locations.

Data availability

The BOWSR algorithm has been released as open source code in a
Github repository at  https://github.com/materialsvirtual-
lab/maml/tree/master/maml/apps/bowsr.
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