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a b s t r a c t

Lithium superionic conductors (LSCs) are of major importance as solid electrolytes for next-generation
all-solid-state lithium-ion batteries. While ab initio molecular dynamics have been extensively applied
to study these materials, there are often large discrepancies between predicted and experimentally
measured ionic conductivities and activation energies due to the high temperatures and short time scales
of such simulations. Here, we present a strategy to bridge this gap using moment tensor potentials
(MTPs). We show that MTPs trained on energies and forces computed using the van der Waals optB88
functional yield much more accurate lattice parameters, which in turn leads to accurate prediction of
ionic conductivities and activation energies for the Li0$33La0$56TiO3, Li3YCl6 and Li7P3S11 LSCs. NPT MD
simulations using the optB88 MTPs also reveal that all three LSCs undergo a transition between two
quasi-linear Arrhenius regimes at relatively low temperatures. This transition can be traced to an in-
crease in the number and diversity of diffusion pathways, in some cases with a change in the dimen-
sionality of diffusion. This work presents not only an approach to develop high accuracy MTPs, but also
outlines the diffusion characteristics for LSCs which is otherwise inaccessible through ab initio
computation.

© 2021 Elsevier Ltd. All rights reserved.
1. Introduction

Lithium superionic conductors (LSCs) are the critical enabling
solid electrolyte component in next-generation all-solid-state
rechargeable lithium-ion batteries [1e4]. Replacing the traditional
flammable organic solvent electrolyte, ceramic LSCs exhibit supe-
rior safety and are also a potential pathway to higher energy den-
sity cell architectures and utilization of lithium metal anodes. As
the name implies, a key property of LSCs is a high ionic conduc-
tivity, typically ranging from O (10�1) mS cm�1 to O (10) mS cm�1

(rivaling that of liquid electrolytes) at room temperature. The anion
chemistry of an LSC has a major influence on their properties.
Sulfide LSCs, such as the Li10GeP2S12 (LGPS) family [5e8], Li7P3S11
[9e13] and Li3PS4 [14e16], tend to have very high ionic conduc-
tivities due to the large, polarizable S2�, but suffer from narrow
electrochemical stability windows, air- and moisture-sensitivity.
Oxide LSCs, such as the Li7La3Zr2O12 garnet family [17] and LISI-
CONs [18e20], typically have lower ionic conductivities compared
to the sulfides, but are much more electrochemically and chemi-
cally stable. Recently, a promising new class of halide LSCs, Li3YCl6
and Li3YBr6, has been discovered that exhibits a good compromise
of ionic conductivities (0.51 mS cm�1 for Li3YCl6 and 1.7 mS cm�1

for Li3YBr6) and electrochemical stabilities between those of the
sulfides and oxides [21].

Molecular dynamics (MD) simulations have been extensively
used in the study of ion conduction in LSCs and other materials. In
particular, ab initioMD (AIMD), i.e., simulations where the energies
and forces are directly obtained by solving the Schr€odinger equa-
tion via density functional theory (DFT), have emerged as a
powerful tool in recent years as they can be transferably applied to
the entire range of LSC chemistries [13,22e29]. However, the high
cost of AIMD simulations means that they are usually performed at
elevated temperatures to obtain sufficient diffusion statistics,
sometimes far in excess of the melting points of some LSCs, and for
relatively short simulation time frames (~ 100 ps). As a conse-
quence, extrapolated room-temperature ionic conductivity and
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Fig. 1. Crystal structures of (a) Li0$33La0$56TiO3 (Space group Pm3
̄
m, No. 221), (b)

Li3YCl6 (Space group P3
̄
m1, No. 164), and (c) Li7P3S11(Space group P1

̄
, No. 2).
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diffusivity have large error bars [30]. Further, there may be phase
transitions or transitions in diffusion mechanisms occurring be-
tween room temperature and high simulation temperatures,
invalidating the Arrhenius assumption used in extrapolation. Such
non-Arrhenius behavior and phase transitions have been reported
in many LSCs, including Li3xLa2/3e xTiO3 [31,32], Li3PS4 [14], and
LGPS [33]. Another source of error arises from the fact that most
AIMD simulations of LSCs are performed in the NVTensemble using
the equilibrium volume from a 0 K density functional theory (DFT)
relaxation calculation. Themost commonDFT functional used is the
Perdew-Burke-Ernzerhof (PBE) generalized gradient approxima-
tion (GGA) [34], which tends to overestimate the lattice parameters
of solids and differ from experimental values by up to 2e3% [35,36].
These differences in lattice parameters can have a major effect on
ion diffusion and activation barriers [23,37].

The net result of the mismatch in working temperatures and
lattice parameters between simulations and experiments is that
room-temperature ionic diffusivity and conductivity of LSCs
computed fromAIMD simulations often disagree substantially with
those measured experimentally, e.g., via electrochemical imped-
ance spectroscopy (EIS). For example, Chu et al. [13] previously
predicted a room-temperature ionic conductivity of 57 mS cm�1 for
the Li7P3S11 LSC using AIMD simulations, far in excess of the highest
experimentally measured room-temperature ionic conductivity of
17 mS cm�1 [10]. Similarly, Wang et al. [29] predicted an ionic
conductivity of 14mS cm�1 for the Li3YCl6 LSC, again far in excess of
the experimentally reported 0.51 mS cm�1 [21].

Classical MD simulations using an interatomic potential (IAP) to
parameterize the potential energy surface (PES) are a potential
solution to enable low-temperature and long-timescale studies. In
recent years, machine learning (ML) the PES as a function of local
environment descriptors has emerged as an especially promising,
and reproducible approach to develop IAPs with near-DFT accuracy
in energies and forces [38e50]. However, most ML-IAPs that have
been developed in the literature still rely on DFT calculations per-
formed using the PBE functional; as such, their performance are
still limited by the accuracy of the DFT training data.

In this work, we show that the gap between experimental and
simulated ionic conductivities in LSCs can be bridged by developing
ML-IAPs under the moment tensor potential (MTP) formalism
[41,51] using training data from the optB88 van der Waals (vdW)
DFT functional [36,52]. Three LSCs, Li0$33La0$56TiO3 (LLTO), Li3YCl6
and Li7P3S11 spanning a diversity of anion chemistries have been
selected as the model systems for investigation, as shown in Fig. 1.
These LSCs have been selected because of their major interest to the
battery research community, as well as the fact that previous AIMD
calculations have either yielded large disagreements with experi-
mentally reported room temperature conductivity or else have not
been performed as in the case of LLTO. We demonstrate that in all
three cases, the discrepancy between computed and measured
conductivities can be explained by a transition between quasi-
linear Arrhenius regimes arising from the activation of additional
diffusion pathways.

2. Material and methods

Fig. 2 summarizes the overall workflow for the construction of
MTPs for the LSCs investigated in this work as well as the DFT
functional choices investigated.

2.1. Structure construction

Supercells of LLTO, Li3YCl6 and Li7P3S11 with lattice parameters
greater than 10 Å were constructed to minimize interactions be-
tween periodic images. For LLTO, a 3 � 3 � 1 supercell of LLTO,
2

equivalent to x ¼ 0.11 in the general formula of Li3xLa2/3e xTiO3
[31,53,54], was initially generated to enumerate symmetrically
distinct orderings of Li/La/Vacancy on the perovskite A site. These
orderings were fully relaxed by DFT. The lowest energy ordering
was then stacked along the c direction to obtain a 3 � 3 � 3
supercell with 132 atoms. During relaxation, shifts of the lithium
ion position from the A-sites of perovskite were observed (see
Figure S1), which is consistent with previous theoretical studies on
LLTO [55e57]. Li3YCl6 has previously been identified to be an

isomorph of Li3ErCl6 (ICSD No. 50151, space group P3
̄
m1, No. 164)

[21]. Starting from the experimentally reported disordered Li3YCl6
structure, the site occupancies were rounded to the nearest rational
numbers based on a total of 3 formula units per unit cell (see
Table S1) and enumeration of distinct orderings was performed.
The lowest energy relaxed structure was then selected to construct
a 1� 1� 2 supercell with 60 atoms. A 1� 2� 1 supercell of Li7P3S11
with 84 atoms was constructed from the experimentally refined
crystal structure [9]. The formation energies (Ef) and energy above
the convex hull (Ehull) for all three LSCs calculated with the PBE and
optB88 functionals are given in Table S2. All three LSCs are pre-
dicted to have Ehull < 0.05 eV/atom. The optB88 Ef are 5e10% lower
than the PBE values, which is consistent with the ~5% higher at-
omization energies predicted by optB88 for ionic solids [36].
2.2. DFT calculations and AIMD simulations

All DFT calculations were performed using the Vienna ab initio
simulation package (VASP) with the projector augmented-wave
(PAW) approach [58,59]. For initial structural relaxations (Step 1
in Fig. 2), spin-polarized calculations were performed with an en-
ergy cutoff of 520 eV and a k-point density of at least 64/A�3, similar
to those used in the Materials Project (MP) [60].

In Step 2, non-spin polarized ab initio molecular dynamics
(AIMD) simulations using NVT ensemble were carried out on the
relaxed supercells with a plane-wave energy cutoff of 280 eV and a
minimal G-centered 1 � 1 � 1 k-mesh. A time step of 2 fs and the
NoseeHoover thermostat [61,62] were used. A similar protocol was
followed as previous works [45,46,48], wherein simulations were
performed at three strains (0, ±0.05) and four temperatures



Fig. 2. Flowchart of the stepwise construction of MTPs for LSCs. DFT functionals utilized in each step and the names of the as-trained MTPs were listed.
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(300 Ke1200 K with 300 K intervals) to diversify the training
structures. The initial structures were heated from 0 K to the target
temperatures with a temperature gradient of 0.25 K/fs and equili-
brated for at least 30 ps. Snapshots were then extracted from a
production run of 15 ps at 0.1 ps intervals, i.e., 150 structures for
each temperature and strain. Hence, for each LSC, a total of 1800
training structures (150 � 4 temperatures � 3 strains) were
generated.

In Step 3, static self-consistent calculations were performed on
the training structures to obtain accurate energies and forces for
MTP training. These calculations were performed with a higher k-
point density of at least 100/A

̊

�3, an energy cutoff of 520 eV and an
electronic relaxation convergence condition of 5 � 10�5 eV/atom,
which were consistent with those used in MP [60].

A main goal of this work is to evaluate the choice of the DFT
functional on the training data and hence, the performance of the
MTP generated. The initial structural relaxations and energy eval-
uations of symmetrically distinct LLTO and Li3YCl6 orderings were
performed using the PBE [34] functional. Subsequent structural
relaxations, AIMD simulations and static energy valuations were
performed using either the PBE functional or optB88 vdW func-
tional [36,52], as shown in Fig. 2.

All DFT and AIMD simulations were carried out using fully-
automated workflows [28] built on the Python Materials Geno-
mics (pymatgen) [63] library and FireWorks scientific workflow
package [64].

2.3 MTP. model training and verification

The moment tensor potential (MTP) formalism has been
extensively discussed in earlier works [41,48,51] and successfully
applied to many chemical systems, including metals [41,48,65],
boron [66], alloys [51], gas-phase reactions [67] and cathode
coating materials [49]. Briefly, the MTP describes the local envi-
ronment around each atom in terms of moment tensors Mm,n,
defined as follows:

Mm;nðniÞ ¼
X
j

fmðjrijj; zi; zjÞrij5…5rij|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}
ntimes

(1)

Here, ni denotes the atomic types as well as the relative positions of
the ith atom and all of its neighboring atoms. zi and zj represent the
atomic types (integers from 0 to n-1 for a system with n different
types of atoms) of the ith atom and its jth neighbor, respectively,
and rij is the position vector of the jth neighbor to the ith atom. The
radial part of the atomic environment is given by the fm term, and
the angular part is encoded by the outer product (5) of the rij
vectors, which is a tensor with rank n. The moment tensorsMm,n are
then contracted to basis functions Ba, which are intrinsically
invariant to atomic permutations, rotations and reflections. The
energy of the system EMTP is then expressed as a linear function of
3

Ba as follows:

EMTP ¼
Xn
i¼1

X
a

xaBaðniÞ (2)

where n and a are the total number of atoms inside the system and
the total number of basis functions for each atom, respectively, and
xa are the coefficients fitted in the training process implemented in
the MLIP package. Similarly, the forces and stresses can be
expressed as the first and second derivatives of the EMTP with
respect to rij [41,51]. An optimized MTP is then obtained by mini-
mizing the errors in the predicted energies and forces with respect
to the DFT training data. In this work, the energy and force data
points are assigned weights of 100:1, similar to previous works
[45e48].

Two key parameters control the performance trade-off of the
MTP. The radius cutoff Rcut determines the maximum interaction
range between atoms. The larger the Rcut, the more the atomic in-
teractions encoded in Equation (1). The completeness of the basis
functions Ba is controlled by its maximum level (levmax). The larger
the levmax, the larger the number of terms in the linear expansion in
Equation (2), which in turn results in higher computational cost
and a greater likelihood of over-fitting. In this work, the Rcut was
chosen to be 5.0 Å, a typical value used in previously reportedMTPs
[49,51,68], while the levmax were set as 18 for Li3YCl6 and Li7P3S11
and 16 for LLTO based on our convergence tests (see Figure S2-S5).
For the fitting, a training:test split of 90:10 was used. In total, seven
MTPs were fitted for LLTO, Li3YCl6 and Li7P3S11 according to the
above discussed procedure. These MTPs are labeled with subscripts
indicating the functionals used during the AIMD simulation (Step 2)
and static energies and forces evaluations (Step 3). For instance,
MTPPBE, optB88 refers to an MTP fitted using the snapshots extracted
from AIMD simulations performed using the PBE functional, with
energies and forces evaluated using the optB88 functional. It should
be noted that MTPoptB88, optB88 was fitted only for Li7P3S11 as a test
case and because the results were highly similar to MTPPBE, optB88
(see later Results section), only the latter was fitted for the other
two LSCs. Previously, the current authors have also used an alter-
native approach inwhich the long-ranged electrostatic interactions
were accounted for separately via an Ewald summation of the
formal oxidation states prior to fitting the residual interactions via
the ML-IAP [46]. A similar “electrostatic” MTP (eMTP) for the LLTO
LSC was also developed but the performance was similar to the
MTP without separate accounting of electrostatics. It can be
concluded that there is significant screening in these materials, and
the radius cutoff used above is already sufficient to account for
most of the electrostatic interactions (see Figure S6).

All training, evaluations and simulations with MTP were per-
formed using MLIP [41,51], LAMMPS [69] and the open-source
Materials Machine Learning (maml) Python package [70].



Table 1
Mean absolute errors (MAEs) on energies and forces predictions for fitted MTPs. The
MAEs were calculated with respect to static energies and forces from the respective
DFT functionals.

LSC MTP MAEenergies (meV/
atom)

MAEforces (eV/Å)

Training Test Training Test

LLTO MTPPBE, PBE 1.40 1.44 0.12 0.12
MTPPBE, optB88 1.39 1.24 0.10 0.10

Li3YCl6 MTPPBE, PBE 0.96 1.11 0.04 0.04
MTPPBE, optB88 1.00 1.06 0.04 0.04

Li7P3S11 MTPPBE, PBE 1.77 1.92 0.09 0.08
MTPPBE, optB88 1.70 1.78 0.08 0.08
MTPoptB88, optB88 1.79 2.07 0.09 0.09
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2.4. QHA thermal expansion

Phonon calculations were performed using the supercells
(outlined in Section 2.1) at nine fixed volumes (80%e120% with 5%
intervals of the equilibrium volume at 0 K from structural re-
laxations with PBE and optB88 functionals). Real-space force con-
stants were calculated utilizing the density functional perturbation
theory (DFPT) [71] method as implemented in VASP, while the real-
space force constants from MTPs were generated with the finite
displacement approach implemented in the Phonopy [72] package.
Phonon frequencies were then calculated from the force constants,
and the thermal expansion from 0 K to 800 K was calculated under
the quasi-harmonic approximation (QHA).

2.5. Diffusivity and conductivity calculations

Classical MD simulations for each LSC were performed using the
trained MTPs. Taking advantage of the lower computational cost
and linear scaling of MTP calculations with respect to system size,
larger supercells with all lattice parameters over 20 Åwere used for
these simulations. Based on benchmarks of the convergence of the
ionic conductivity with cell sizes (Figure S7), simulation cells of
3 � 3� 2 (2,376 atoms), 2� 2� 3 (720 atoms) and 3� 2 � 2 (1,008
atoms) AIMD supercells are utilized for LLTO, Li3YCl6 and Li7P3S11,
respectively. The time step was set to 1 fs, and the total simulation
time was at least 1 ns for all MD simulations.

The tracer diffusivity (D*) of Li ions was obtained by performing
a linear fitting of the mean square displacement (MSD) of all
diffusing Li ions with time, according to the Einstein relation [73]:

D* ¼ 1
2dNt

XN
i¼1

½DriðtÞ�2 (3)

where d is the number of dimensions in which diffusion occurs
(d¼ 3 for all three electrolytes), N is the total number of diffusing Li
ions, and Dri(t) is the displacement of the ith Li ion at time t.

The charge diffusivity (Ds) of Li ions was calculated from the
square net displacement of all diffusing Li ions, as described below
[73]:

Ds ¼ 1
2dNt

"XN
i¼1

DriðtÞ
#2

(4)

The Haven ratio is then given by the following equation:

HR ¼ D*=Ds (5)

Finally, the ionic conductivity s(T) at temperature T is given by
the Nernst-Einstein equation [73]:

sðTÞ ¼ rz2F2

RT
DsðTÞ (6)

where r is themolar density of diffusing ions in the unit cell, z, F and
R are the charge of Li ions (z ¼ 1), the Faraday constant and the gas
constant, respectively. Arrhenius plots were then generated to
determine the temperature-dependent activation energies (Ea).

3. Results

3.1. MTP validation

Table 1 compares the mean absolute errors (MAEs) in energies
and forces of the fitted MTPs. In all cases, the MAEs in energies are
between 0.96 meV/atom and 2.07 meV/atom, while the MAEs in
4

forces are below 0.20 eV/Å. These MAEs are similar to or lower than
those of other MTPs fitted in the literature [48,49], and a substantial
improvement over traditional IAPs. The training and test MAEs are
generally very similar, indicating that there is little likelihood of
overfitting. The MAEs in energies and forces are also uniformly
distributed with respect to the different temperatures that training
structures were extracted from (see Figure S3-S5), indicating
consistently high accuracy of our MTPs to reproduce DFT energies
and forces at different temperatures. These results are consistent
regardless of the DFT functionals (PBE or optB88) used to generate
the training data. Further analysis also found that the local envi-
ronments sampled by nanosecond NPT MD simulations using the
fitted MTP are similar with those sampled by the AIMD training
data (Figure S8) and the MAEs in forces are consistently low
regardless of local environment (Figure S9). It should be noted that
while it is possible that MD simulations under more extreme
conditions, e.g., above 1200 K, may sample local environments that
are substantially different from the AIMD training data and possibly
result in higher errors, such conditions are unlikely to be of interest
for most applications of the fitted MTPs.
3.2. Lattice parameters

Table 2 compares the lattice parameters and volumes for the
three LSCs fromDFTandMTP relaxations with experimental values.
It can be seen that the use of the optB88 functional significantly
improves the predicted lattice parameters and densities over the
PBE functional for Li3YCl6 and Li7P3S11 LSCs, while yielding smaller
improvements for LLTO LSC. The PBE computed densities under-
estimate the experimental densities by 3e6%, consistent with the
well-known propensity of PBE to underbind. The optB88 computed
densities are within 1e3% of the experimental densities due to the
fact that optB88 functional is less repulsive at short interatomic
separations [36]. As shown in Fig. 3, the MTPs are generally able to
reproduce the DFT lattice parameters to within 1e2.5%. It should be
noted that the errors with respect to DFT follows the order
LLTO < Li3YCl6~Li7P3S11. We hypothesize that this can be attributed
to the difference in the potential energy landscapes, i.e., Li3YCl6 and
Li7P3S11 have shallower potential energy landscapes, which leads to
smaller energy changes with lattice parameter variations. This can
be seen to some degree in the equation of state plots (see later
Fig. 4), as the same percentage of change in volume leads to smaller
changes in the total energies of Li3YCl6 and Li7P3S11.
3.3. Equations of state and thermal expansion

Fig. 4aec shows the equation of state (EOS) curves of the three
LSCs calculated from DFT and MTPs. In general, the MTP computed
EOSs agree well with the corresponding DFT EOSs, further attesting



Table 2
Lattice parameters and densities of LSCs relaxed with the PBE and optB88 DFT functionals and the trainedMTPs at 0 K, in comparisonwith experimental lattice parameters and
densities at room temperature for LLTO [53], Li3YCl6 [21] and Li7P3S11 [9]. Values in brackets are the percentage differences between the computed values and the experimental
measurements.

a (Å) b (Å) c (Å) Density (g cm�3)

LLTO
DFT PBE 3.96 (2.3%) 3.89 (0.5%) 3.91 (1.0%) 4.84 (�3.0%)
DFT optB88 3.95 (2.1%) 3.88 (0.3%) 3.90 (0.8%) 4.88 (�2.2%)
MTPPBE, PBE 3.96 (2.3%) 3.89 (0.5%) 3.90 (0.8%) 4.85 (�2.8%)
MTPPBE, optB88 3.95 (2.1%) 3.87 (0.0%) 3.89 (0.5%) 4.90 (�1.8%)
Experiment 3.87 3.87 3.87 4.99

Li3YCl6
DFT PBE 11.17 (�0.3%) 11.17 (�0.3%) 6.22 (3.2%) 2.37 (�3.3%)
DFT optB88 11.01 (�1.7%) 11.01 (�1.7%) 6.02 (�0.2%) 2.52 (2.9%)
MTPPBE, PBE 11.18 (�0.2%) 11.18 (�0.2%) 6.27 (4.0%) 2.35 (�4.1%)
MTPPBE, optB88 11.04 (�1.4%) 11.04 (�1.4%) 6.08 (0.8%) 2.48 (1.2%)
Experiment 11.20 11.20 6.03 2.45

Li7P3S11
DFT PBE 12.86 (2.9%) 6.19 (2.7%) 12.69 (1.3%) 1.87 (�5.6%)
DFT optB88 12.61 (0.9%) 6.08 (0.8%) 12.62 (0.7%) 1.95 (�1.5%)
MTPPBE, PBE 12.66 (1.3%) 6.33 (5.0%) 12.56 (0.2%) 1.88 (�5.1%)
MTPPBE, optB88 12.52 (0.2%) 6.14 (1.8%) 12.57 (0.3%) 1.95 (�1.5%)
MTPoptB88, optB88 12.52 (0.2%) 6.12 (1.5%) 12.66 (1.0%) 1.96 (�1.0%)
Experiment 12.50 6.03 12.53 1.98

Fig. 3. Comparison of the lattice parameters predicted via relaxation with the trained MTPs and the DFT-relaxed values. For each MTP, the relaxation was performed using 36
strained structures constructed by applying strains of �0.15 to 0.15 with 0.05 intervals in six different modes to the DFT relaxed ground-state structure to assess the numerical
stability of MTP relaxation.
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to the robustness of the MTP fitting procedure. In addition to the
differences in equilibrium volumes discussed in the preceding
section, we note that the optB88 DFTandMTP calculations predict a
larger curvature for Li3YCl6 and Li7P3S11 LSCs, i.e., the optB88
functional predicts a higher bulk modulus than PBE. These results
are consistent with the calculated QHA thermal volume expansion,
plotted in Fig. 4def. The MTP QHA thermal expansion curves match
closely with the corresponding DFT QHA thermal expansion curves.
In general, the optB88 DFT andMTP volumes are much closer to the
experimental volumes for respective temperatures between 0 and
800 K. LLTO has the smallest MTPPBE, optB88 vol expansion coeffi-
cient (bPBE,optB88) of 1.08 � 10�5 K�1 from 300 K to 800 K, in
excellent agreement with the reported low thermal expansion
coefficient of 9.35 � 10�6 K�1 from X-ray diffraction analysis from
298 K to 800 K [74]. Li3YCl6 and Li7P3S11 have much higher pre-
dicted bPBE,optB88 of 5.28 � 10�5 K�1 and 4.07 � 10�5 K�1, respec-
tively. A slightly higher volume expansion is predicted for Li3YCl6 by
optB88 compared to PBE.
3.4. Ionic conductivity

Fig. 5 shows the Arrhenius plots for the three LSCs from MD
simulations performed using the MTPs and a summary of the
derived activation energies (Ea) and conductivities at room
5

temperature (s300K) in comparison with experiments and previous
AIMD simulations. From the MTPPBE, optB88 Arrhenius plots (filled
markers and solid lines), it is immediately apparent that all three
LSCs do not exhibit a single linear Arrhenius regime, which is the
common assumption made when extrapolating high-temperature
(HT) AIMD simulations to room temperature. Transitions between
a HT quasi-linear regime with lower Ea and a low-temperature (LT)
quasi-linear regime with higher Ea occur at ~ 450 K, 425 K and
400 K for LLTO, Li3YCl6 and Li7P3S11, respectively. In all cases, the
MTPPBE, optB88 predicted s300K and Ea are in remarkably good
agreement with previously reported experimental values for all
three LSCs. In particular, while previous HT AIMD simulations
predicted an extraordinarily high s*300K of 57 mS cm�1 for Li7P3S11,

the MTPPBE, optB88 predicted s*300K and s300K are only 6.50 and
7.51 mS cm�1, much closer to the 4e17 mS cm�1 that have been
reported experimentally thus far [10e13]. We further note that the
MTPPBE, optB88 HT Ea are also consistent with those obtained from
previous HTAIMD simulations for Li3YCl6 [29] and Li7P3S11 [13]. The
Li3YCl6 LSC has only been experimentally studied at 230e360 K.
Our MTPPBE, optB88 MD simulations predict that Li3YCl6 would un-
dergo a transition to a lower Ea regime at around 425 K; a predic-
tion that would need to be verified by further experiments from the
community.

The Haven ratios (HR) at 300 K are 0.68, 0.34 and 0.87 for LLTO,



Fig. 4. Equations of state at 0 K (a, b, c) and QHA thermal volume expansion b (d, e, f) of LLTO, Li3YCl6 and Li7P3S11 calculated from DFT and MTPs. The volumes in the b plots (d, e, f)
are normalized with respect to the experimentally measured volumes at room temperatures [9,21,53].
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Li3YCl6 and Li7P3S11, respectively. There are no existing reports of
the Haven ratios for these LSCs to the authors’ knowledge. How-
ever, LLTO has been experimentally reported to possess highly
correlated motions at room temperature [75], consistent with the
computed HR of 0.68. Further, our calculated HR for Li7P3S11 also lies
in between the AIMD simulated HR (0.42, 0.53) [76] and NMR
measured HR (in the order of 1) [77] of Li10GeP2S12, another sulfide
LSC.

We also note that the MTPPBE, optB88 and MTPPBE, PBE yield
fundamentally different results for Li3YCl6 and Li7P3S11. In both
cases, the MTPPBE, PBE simulations do not predict any transitions
between quasi-linear Arrhenius regimes in the simulation tem-
perature range of 300e600 K. The activation energies Ea and room
temperature ionic conductivities s300K are also severely under-
estimated and overestimated, respectively, compared to experi-
ments, similar to prior AIMD simulations using the PBE functional.
The poor performance of the PBE-basedMTP and AIMD simulations
can be traced to the substantial overestimation of the lattice pa-
rameters by the PBE functional, which can lead to lower activation
barriers and higher ionic conductivities [23,78]. It should be noted
that we cannot rule out the possibility that the observed transitions
between quasi-Arrhenius regimes are an artifact of the DFT func-
tional used in generating the training data, i.e., optB88, but the
generally improved agreement between the predicted room-
temperature ionic conductivities and experimental values suggest
that the transitions are a real phenomenon. It is our hope that
future detailed experiments may shed further light on these
predictions.

3.5. Transitions in diffusion mechanisms

To understand the reason behind observed transitions between
quasi-linear Arrhenius regimes, we have extracted the trajectories
from the MTPPBE, optB88 MD simulations of the three LSCs at room
temperature and above the transition temperature and plotted
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them in Fig. 6 and Figure S10-S12. In all three LSCs, a substantial
change in the number and variety of diffusion pathways is
observed. For LLTO, Li diffusion at 300 K occurs primarily along b
and c directions inside the La-poor layer, which agrees well with
experimental observations at room temperature [79], but addi-
tional diffusion pathways between planes are activated above the
transition temperature of 450 K (Fig. 6a). Similarly, Li3YCl6 exhibits
quasi-1D diffusion at 300 K and 3D diffusion above the transition
temperature of 425 K. For Li7P3S11, Li diffusion is already 3D at 300 K
but occurs along well-defined pathways. Above the transition
temperature of 400 K, additional pathways are activated. The
decrease in activation energies Ea can be directly traced to the in-
crease in the variety and dimensionality of diffusion in the three
LSCs. Themost significant reduction in Ea (~ 0.25 eV) is observed for
Li3YCl6, which transitions from a quasi-1D to 3D conductor at
around 425 K.

4. Discussion

Briefly, the above results have shown that the discrepancy be-
tween computed and experimentally measured ionic conductiv-
ities in the literature can be traced to two effects. First, the choice of
the DFT functional can lead to substantial errors in the lattice pa-
rameters, which can have a large effect on the predicted activation
barriers and ionic conductivities. Second, most AIMD simulations of
LSCs in the literature were performed at high temperatures in the
NVT ensemble to obtain sufficient hop statistics. Not only does this
lead to further errors in the lattice parameters, there is also a strong
likelihood that these simulations do not capture transitions in
quasi-linear Arrhenius regimes occurring at lower temperatures.

These issues can be addressed through carefully-trained ML-
IAPs. With a generalizable stepwise workflow for the construction
of MTPs for LSCs (see Fig. 2), we have consistently generated
training structures sampling a range of local environments (see
Figure S8) and fitted MTPs to study LLTO, Li3YCl6 and Li7P3S11 LSCs.



Fig. 5. (Top) Arrhenius plot for LLTO, Li3YCl6 and Li7P3S11 from NPT/MD simulations using MTPPBE, PBE (open markers) and MTPPBE, optB88 (solid markers). The diffusivities were
obtained by averaging the mean square displacements from five independent MD simulations at each temperature for at least 1 ns. (Bottom) Room temperature ionic conductivities
(s300K) and activation energies (Ea) for LLTO, Li3YCl6 and Li7P3S11, obtained from MD simulations using MTPPBE, PBE and MTPPBE, optB88. For MTPPBE, optB88, transitions between two
quasi-linear Arrhenius regimes were observed for all three LSCs and the Ea for each regime are reported separately. Available AIMD derived values as well as experimental references
are also listed.
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Our results suggest that the choice of DFT functional used in
generating the initial and snapshot training structures is relatively
unimportant, but the choice of the DFT functional used in the en-
ergy and force evaluations to generate the training data is critically
important. Here, we show that the use of the optB88 vdW func-
tional for static energy and force calculations and the ns-scale ML-
IAP MD at lower temperatures significantly improve the agreement
in lattice parameters, activation energies and room-temperature
ionic conductivities of the LSCs with experiments.

These results have broad implications for ML-IAP development
strategy. The typical approach in the literature thus far has been to
use the same DFT functional in both the generation of training
structures as well as energy/force evaluations. Decoupling these
two choices allow one to use a relatively cheap computational
method such as PBE functional or even other empirical potentials,
for the most expensive step of generating training structures, while
using a more expensive but accurate computational method, e.g.,
SCAN or HSE, for the static energy and force evaluations. While the
generation of the DFT training data dominates the computational
effort in developing ML-IAPs, it should be noted that the ML-IAPs
themselves are many orders of magnitude computationally less
expensive than DFT calculations, and more importantly, scales
linearly with respect to the number of atoms (see Table S3). It is this
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linear scaling property, while retaining close to DFT accuracy in
energies and forces, that enables the simulations of large systems at
long time scales in this work.

Our results also have significant implications for LSC develop-
ment. For all three LSCs investigated, a transition between diffusive
regimes is observed at relatively low temperatures (400e450 K). In
most cases, the activation barriers and ionic conductivities that
have been experimentally measured correspond to the low-
temperature regime. One potential avenue for further enhancing
the ionic conductivities of these and other LSCs is to attempt to
stabilize the high-temperature, lower activation energy diffusion
regimes at room temperature. This may be achieved by quenching
from higher temperatures, compositional modifications (e.g., dop-
ants or substitutions), or mechanical modifications (e.g., intro-
ducing strain). By developing ML-IAPs using the approach outlined
in this work, MD simulations can provide critical guidance on po-
tential pathways for further LSC optimization.

5. Conclusions

To conclude, we have shown that MTPs trained using optB88
energies and forces can successfully reproduce the experimental
lattice parameters, activation energies and room temperature ionic



Fig. 6. Li trajectories (colored as green) from MTPPBE, optB88 MD simulations of the LLTO, Li3YCl6 and Li7P3S11 LSCs at room temperature (300 K) and above the transition tem-
peratures. For brevity, only the projection in the crystallographic a-c, b-c and a-c planes are shown for LLTO, Li3YCl6 and Li7P3S11, respectively, at each temperature. The projections in
the other crystallographic planes are provided in Figure S10-S12.
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conductivities of the LLTO, Li3YCl6 and Li7P3S11 LSCs. In all three
LSCs, MD simulations using the trained MTP identify a transition
between quasi-linear Arrhenius regimes occurring at relatively low
temperatures. These results not only highlight the fundamental
limitations in using high-temperature, short time scale AIMD
simulations to predict room-temperature properties of materials,
but also suggest a potential pathway and strategy to predictive LSC
design through the use of machine learning interatomic potentials.
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