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A B S T R A C T   

The grain boundary (GB) energy has a profound influence on the grain growth and properties of polycrystalline 
metals. Here, we show that the energy of a GB, normalized by the bulk cohesive energy, can be described purely 
by four geometric features. By machine learning on a large computed database of 361 small Σ (Σ < 10) GBs of 
more than 50 metals, we develop a model that can predict the grain boundary energies to within a mean absolute 
error of 0.13 J m− 2  . More importantly, this universal GB energy model can be extrapolated to the energies of 
high Σ GBs without loss in accuracy. These results highlight the importance of capturing fundamental scaling 
physics and domain knowledge in the design of interpretable, extrapolatable machine learning models for ma-
terials science.   

Grain boundaries (GBs) play an important role in determining the 
strength, toughness, and corrosion resistance of materials [1,2]. A key 
property of a GB is its energy, which determines grain growth and the GB 
distribution. While the GB energy can be accurately calculated using 
electronic structure methods such as density functional theory (DFT) 
calculations, the requirement for large supercells to model the inher-
ently low symmetry GB structure limits such computationally intensive 
approaches to relatively small Σ GBs. Nevertheless, substantial data-
bases of GB energies and other properties have been developed using 
high-throughput DFT. For example, the GB database (GBDB) [3] 
developed by the present authors contains the calculated GB energies 
and work of separation of more than 50 elemental metals for both tilt 
and twist GBs up to Σ = 9. 

Alternatively, machine learning (ML) techniques have emerged as a 
means to develop models that can directly predict the GB energy from 
compositional and structural features. [4–8] However, existing ML 
models targeting elemental GBs are limited in scope by chemistry or 
structure type, such as face-centered cubic (fcc) Cu [4], Ni [5,6], Al [7], 
or body-centered cubic (bcc) Fe [8] systems. These limitations are pri-
marily a result of the choice of data source; these prior works have been 
developed using data sets computed using embedded atom method 
(EAM) potentials. While much less computationally intensive than DFT 
methods, EAM calculations are far less accurate, especially for non-fcc 
metals, [3] and EAM potentials are available for only a limited subset 
of elements. Furthermore, the majority of these prior works rely on 

featurization approaches such as the Smooth Overlap of Atomic Posi-
tions (SOAP) [5], [6] and the pair-correlation function (PCF) [7] that 
generate a large number of features which do not provide direct inter-
pretability using commonly-used GB descriptions. 

In this letter, we outline a physics-informed approach to develop a 
universal ML model for the GB energy of all metals, rather than for a 
subset of metals. We will demonstrate that the energy of small Σ GBs of 
metals can be predicted to within a mean absolute error (MAE) of 0.13 J 
m− 2  using a gradient boosting regression (GBR) [9] model of the 
cohesive energy and four geometric GB features only. More critically, 
the same model can be extrapolated, without retraining, to predict the 
energies of high Σ GBs with a comparable MAE of 0.12 J m− 2  . This work 
provides not only a means to rapidly predict the GB energies of any 
element, but also highlights the importance of choosing appropriate 
target normalization and features for the development of interpretable 
and extrapolatable ML. 

The critical starting point is in re-evaluating the choice of target for 
our ML GB model. While prior works have attempted to directly predict 
the absolute GB energy, we do not believe this to be an optimal choice of 
target. The GB energy EGB is the excess energy of the GB compared to the 
bulk per unit area, which can be obtained from computational models 
as: 

EGB =
EGB,supercell − n⋅Eatom

bulk
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where EGB,supercell is the energy of the supercell GB model, n is the number 
of atoms in the GB model, Eatom

bulk is the energy per atom of the bulk, A is 
the area of the GB and the factor of 2 accounts for the fact that there are 
two GBs per supercell model. The physical interpretation is that EGB is 
related to the energy necessary to break or stretch bonds at the GB from 
their bulk equilibrium configuration. This energy to stretch or break 
bonds scales with the cohesive energy of the metal Ecoh (see Fig. S1), [10] 
which ranges from ∼ 1.1 eV atom− 1 for the alkali metals to ∼ 8.9 eV 
atom− 1 for tungsten. To remove this chemical scaling effect, we have 
elected to use the normalized GB energy ÊGB = EGB/Ecoh as our choice of 
target. 

Based on the coincident-site-lattice (CSL) theory [11,12], the GB can 
be specified at a macroscopic level by five degrees of freedom (DOF): 
two DOFs to define the plane normal of the GB (or alternatively the 
Miller indices (hkl)), two DOFs to define the rotation axis ([uvw]) and one 
DOF to define the misorientation angle (θ). Miller indices, which are 
defined to be integers by convention, are non-optimal for a regression 
task. As such, the (hkl) and [uvw] were converted to the inter-planar 
distances of the GB plane (dGB) and the normal plane to the rotation 
axis (drot), respectively. The cosine of the misorientation angle (cosθ) 
was used instead of the misorientation angle itself. 

In addition to these geometric GB features, we included three addi-

tional features related to bond stretching and breaking at the GB, which 
were partially inspired by prior works in the literature [13]. To describe 
the bond deformation, we used both the average bond length in the GB 
supercell, BL =

∑n
i=1(BLi

GB)/n, and the average change in bond lengths 
between the GB supercell and its bulk conventional lattice, ΔBL =
∑n

i=1(BLi
GB − BL0)/n, where BLi

GB is the bond length of the ith bond in 
the GB supercell, BL0 is the bond length in the corresponding bulk 
conventional structure, and n is the number of bonds counted in the GB 
supercell. Here, the bonds are identified by performing a local envi-
ronment analysis via a Voronoi tessellation-based algorithm imple-
mented in the Python Materials Genomics (pymatgen) package [14]. A 
positive (negative) ΔBL indicates overall bond stretching (compressing) 
at the GB. According to the Read-Shockley dislocation model [15], EGB 
of GBs with small misorientation angles is proportional to the shear 
modulus G. Ratanaphan et al. [10] have also shown previously that the 
GB energies of bcc Mo and Fe are related to G. The multi-linear 
regression models developed by Zheng et al. [3] extended this conclu-
sion to more bcc, fcc, and hexagonal closest packed (hcp) metals. 
Therefore, we include the DFT Voigt-Reuss-Hill shear modulus G from 
the Materials Project as the final feature. Fig. 1(a) summarizes the pre-
liminary set of six features considered in work. 

An initial dataset of GB energies was obtained from the GBDB [3], 

Fig. 1. Feature Engineering. (a) Initial feature candidates 
based on the macroscopic geometry, microscopic bonding 
environment in the GB supercell, and the shear modulus of 
the elemental bulk system. (b) Best subset selection of fea-
tures. There are a total of 63 possible subsets of 6 features. 
The swarmplot summarizes the performances of all the sub-
sets, categorized by the number of features (nf ). The blue 
diamond point refers to the global optimal subset with the 
lowest test MAE in the predicted normalized grain boundary 
energy ÊGB .   
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which contains the energies of 316 GBs of 53 elements in fcc, bcc, hcp 
and double-hcp (dhcp) structures, after excluding Lu, Eu, and Hg due to 
the lack of the bulk elastic data. The Σs of the GBs range from 3 to 9. The 
maximum Miller index (MMI) for the rotation axis and the grain 
boundary plane are 1 and 3, respectively. In this work, we extended the 
MMI for the grain boundary plane to 4 for 5 elements (As, Nb, Pt, Cu, and 
Ir), which added 5 more GBs to the initial data. Interested readers are 
referred to ref [3] for the details on the GB structure generation and 
computational methods. For the model development, the 321 GBs with 
Σ ≤ 9 were divided into training (258 GBs) and test (63 GBs) sets using 
stratified random sampling. The training data comprises 80% of the GBs 
from each element with more than one GB, and the single GB from the 
remaining elements. 

A preliminary model selection process was performed in an auto-
matic fashion utilizing a tree-based pipeline optimization tool (TPOT) 
[16] with the six initial features (refer to Supplementary Materials for 
details). The suggested pipeline from TPOT is a decision-tree-based GBR 
model preceded by a polynomial feature transformation step. We 
recognize that there is a risk of redundancy in our selected features, e.g., 

G has a direct relationship with Ecoh, which was used to normalize the GB 
energy. Therefore, a comprehensive search for the “best subset” of the 
six initial features was performed using the suggested pipeline. As shown 
in Fig. 1(b), it was found that the model’s test MAE converges with only 
four features, (dGB, cosθ, ΔBL, BL) being the optimal set with the lowest 
test MAE. Further increase in the number of features leads to small in-
creases in test MAE and decreases in training MAE, i.e., evidence of 
overfitting. It is worth noting that the only non-geometric feature, the 
shear modulus G, is not within the optimal subset, indicating that our 
proposed normalization with the cohesive energy has effectively 
addressed the chemical dependence of EGB. 

As illustrated in Fig. 2(a), the final optimal ML pipeline starts from 
the GB initial structure and the corresponding bulk conventional struc-
ture and executes the following steps: (i) featurizes the input GB struc-
ture, (ii) applies a polynomial transformation of the features up to 
degree 2, (iii) makes a prediction based on the trained decision-tree- 
based GBR model. Following this pipeline, we achieved the MAEs for 
ÊGB at 1.21 × 10− 7 and 3.38 × 10− 7 mol m− 2   for the training and the 
test data, respectively (Fig. 2(b)), which translate to MAEs for EGB at 

Fig. 2. The machine learning pipeline and the performance. (a) The schematic illustration of the pipeline developed in this work. (b) and (c) are parity plots 
demonstrating the pipeline’s performances on ÊGB and EGB, respectively. 
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0.04 and 0.13 J m− 2  (Fig. 2(c)). The distributions of the absolute errors 
for each element show that 48 out of the 55 elements have MAEs(EGB) 
less than 0.1 J m− 2  (Fig. S3(b)). Actinide and lanthanide elements such 
as Th, Ac, Yb, and Ce display the highest errors in EGB, which may be a 
result of less accurate DFT calculations without proper Hubbard U 
values applied to account for the strong self-interaction of the f elec-
trons. Some transition metals as Cr and Fe also exhibit higher MAEs, 
which we attribute to the uncertainty in the ground state magnetic 
ordering at the GBs in the DFT calculations. 

Fig. 3 shows the permutation importance of the four input features, 
which is obtained by randomly shuffling the values of one feature and 
calculating the decrease in the MAE of the ML pipeline. [17] The feature 
with highest importance is BL, the average bond length, while the 
remaining three GB features (dGB, cosθ and ΔBL) have similar feature 
importances. This is consistent with previous observations by Guziewski 
et al. [18] where the grain boundary energies of silicon carbide are 
better described by microscopic descriptors than the macroscopic ones. 
Furthermore, the fact that the dGB has higher importance than cosθ echos 
with the conclusion drawn by Rohrer et al. [19], who found that vari-
ations in the grain boundary plane induce a greater change in the energy 
than the variations in the misorientation. 

Thus far, the optimal model presented has been trained only on low Σ 
GBs that can be readily computed using standard DFT computations. If it 
were limited to low Σ GBs, such a model would be of limited utility. To 
demonstrate its ability to extrapolate to high Σ GBs, which require far 
more expensive DFT computations, an additional 40 calculations on Ta, 
Pd, Cu, Pt and Li GBs with Σ from 17 to 66 with MMI of the grain 
boundary plane ≤ 8 and MMI of the rotation axis ≤ 1 were performed 
(Fig. S2). The model, without further retraining, achieved an MAE(EGB) 
of 0.12 J m− 2  on this data set (Fig. 4(b)), commensurate with the test 
error of the small Σ GB test set. 

The GB energy anisotropy can be more important in determining the 
microstructure evolution instead of the absolute value. Therefore, we 
investigated a total of 21 < 110 > symmetric tilt boundaries of fcc nickle 
spanning the entire range of unique tilt angles. Fig. 5 shows the pre-
dicted GB energies from the model developed in this work for the 21 GBs 
as a function of the misorientation angle. We also plotted GB energies 
calculated using a machine learning moment tensor potential (MTP) 
[20], EAM [21], and DFT (only available for two GBs) for comparison. It 
should be noted that the GB energies from the MTP is expected to be far 
more accurate than those from the EAM. Our model has an MAE of 0.17 
J m− 2 against MTP values, outperforming the EAM which has an MAE of 
0.21 J m− 2. In addition, our model successfully identified the cusp at 
109.47∘ (Σ3/(111)/109.47∘). We note that Σ3/(111)/109.47∘ GB is 
equivalent to Σ3/(111)/60∘, and the energy predicted using the latter GB 
configuration gives the lower energy. However, the model did not 
identify a cusp for the Σ11/(113)/50.48∘ GB, which is the only one out of 
all the 21 GBs to have negative ΔBL. The under-population of the 
samples with negative ΔBL is also observed in the Ni training data which 
may explain the larger error for this type of GBs. 

To summarize, we have developed a physics-informed ML pipeline 
that predicts GB energies for more than 50 metals to within 0.13 J m− 2. 
This ML model can be applied to high Σ GBs without loss in accuracy. A 
key innovation of our approach is to normalize the GB energy by the 
elemental cohesive energy to remove chemical scaling effects, resulting 
in a target that can be modelled purely using geometric and structural 
features. We believe this conceptual approach is general and is key to the 
development of ML models that are interpretable and extrapolatable. We 
have not attempted to model non-elemental GBs in this work given the 
lack of a sufficiently large dataset for model training. Nevertheless, we 
can speculate on the applicability of the same approach to GBs of non- 

Fig. 3. Permutation feature importance of the four geometric input features.  

Fig. 4. Performance of GB model on unseen high σ GBs. Parity plot of predicted versus DFT (a) normalized ÊGB , (b) absolute EGB.  

W. Ye et al.                                                                                                                                                                                                                                      



Scripta Materialia 218 (2022) 114803

5

elements, e.g., alloys and ceramics. Non-elemental GBs are much more 
complex, given that there may be compositional differences between the 
GB and the bulk region, e.g., preferential segregation of certain ele-
ments, etc [22]. While we believe some form of target normalization 
with an averaged bond energy descriptor, e.g., formation energies per 
atom, etc., would still be useful to remove large energetic scaling effects, 
it is likely be less effective than in the elemental case. Furthermore, a 
purely geometric / structural descriptor set would not be sufficient and 
compositional degrees of freedom would need to be included as well. 
Regardless of these limitations, the universal model can be used to fast 
transverse the vast elemental GB configurations in alloys. More impor-
tantly, we believe the conceptual framework developed in this work is 
sound and should be extended to other properties that have a 
well-defined scaling relationship with bond strength, e.g., elastic con-
stants, etc. 

All GB data and models have been made available in the Github re-
pository of the open-source Materials Machine Learning (maml) package 
at https://github.com/materialsvirtuallab/maml. 
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