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ABSTRACT: Graph networks are a new machine learning (ML)
paradigm that supports both relational reasoning and combinatorial
generalization. Here, we develop universal MatErials Graph Network
(MEGNet) models for accurate property prediction in both
molecules and crystals. We demonstrate that the MEGNet models
outperform prior ML models such as the SchNet in 11 out of 13
properties of the QM9 molecule data set. Similarly, we show that
MEGNet models trained on ∼60 000 crystals in the Materials Project
substantially outperform prior ML models in the prediction of the
formation energies, band gaps, and elastic moduli of crystals,
achieving better than density functional theory accuracy over a
much larger data set. We present two new strategies to address data
limitations common in materials science and chemistry. First, we
demonstrate a physically intuitive approach to unify four separate
molecular MEGNet models for the internal energy at 0 K and room temperature, enthalpy, and Gibbs free energy into a single
free energy MEGNet model by incorporating the temperature, pressure, and entropy as global state inputs. Second, we show
that the learned element embeddings in MEGNet models encode periodic chemical trends and can be transfer-learned from a
property model trained on a larger data set (formation energies) to improve property models with smaller amounts of data
(band gaps and elastic moduli).

■ INTRODUCTION

Machine learning (ML)1,2 has emerged as a powerful new tool
in materials science,3−14 driven in part by the advent of large
materials data sets from high-throughput electronic structure
calculations15−18 and/or combinatorial experiments.19,20

Among its many applications, the development of fast,
surrogate ML models for property prediction has arguably
received the most interest for its potential in accelerating
materials design21,22 as well as accessing larger length/time
scales at near-quantum accuracy.11,23−28

The key input to any ML model is a description of the
material, which must satisfy the necessary rotational, transla-
tional, and permutational invariances as well as uniqueness. For
molecules, graph-based representations29 are a natural choice.
This graph representation concept has been successfully
applied to predict molecular properties.30,31 Recently, Faber
et al.32 have benchmarked different features in combination
with models extensively on the QM9 data set.33 They showed
that the graph-based deep learning models34,35 generally
outperform classical ML models with various features.
Furthermore, graph-based models are generally less sensitive
to the choice of atomic descriptors, unlike traditional feature
engineering-based ML models. For example, Schütt et al.10,36

achieved state-of-the-art performance on molecules using only
the atomic number and atom coordinates in a graph-based

neural network model. Gilmer et al.37 later proposed the
message passing neural network (MPNN) framework that
includes the existing graph models with differences only in
their update functions.
Unlike molecules, descriptions of crystals must account for

lattice periodicity and additional space group symmetries. In
the crystal graph convolutional neural networks (CGCNNs)
proposed by Xie and Grossman,9 each crystal is represented by
a crystal graph, and invariance with respect to permutation of
atomic indices and unit cell choice are achieved through
convolution and pooling layers. They demonstrated excellent
prediction performance on a broad array of properties,
including formation energy, band gap, Fermi energy, and
elastic properties.
Despite these successes, current ML models still suffer from

several limitations. First, it is evident that most ML models
have been developed on either molecular or crystal data sets. A
few notable exceptions are the recently reported SchNet36 and
an update of the MPNN,38 which have been tested on both
molecules and crystals, respectively, although in both cases
performance evaluation on crystals is limited to formation
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energies only. Second, current models lack a description of
global state (e.g., temperature), which are necessary for
predicting state-dependent properties such as the free energy.
Last but not least, data availability remains a critical bottleneck
for training high-performing models for some properties. For
example, while there are ∼69 000 computed formation
energies in the Materials Project,15 there are only ∼6000
computed elastic constants.
In this work, we aim to address all these limitations. We

propose graph networks39 with global state attributes as a
general, composable framework for quantitative structure−
state−property relationship prediction in materials, that is,
both molecules and crystals. Graph networks can be shown to
be a generalization/superset of previous graph-based models
such as the CGCNN and MPNN; however, because graph
networks are not constrained to be neural network-based, they
are different from the aforementioned models. We demon-
strate that our MatErials Graph Network (MEGNet) models
outperform prior ML models in the prediction of multiple
properties on the ∼131 000 molecules in the QM9 data set33

and ∼69 000 crystals in the Materials Project.15 We also
present a new physically intuitive strategy to unify multiple free
energy MEGNet models into a single MEGNet model by
incorporating state variables such as temperature, pressure, and
entropy as global state inputs, which provides for multifold
increase in the training data size with minimal increase in the
number of model parameters. Finally, we demonstrate how
interpretable chemical trends can be extracted from elemental
embeddings trained on a large data set, and these elemental
embeddings can be used in transfer learning to improve the
performance of models with smaller data quantities.

■ METHODS
MEGNet Formalism. Graph networks were recently proposed by

Battaglia et al.39 as a general, modular framework for ML that
supports both relational reasoning and combinatorial generalization.
Indeed, graph networks can be viewed as a superset of the previous
graph-based neural networks, though the use of neural networks as
function approximators is not a prerequisite. Here, we will outline the
implementation of MEGNet models for molecules and crystals, with
appropriate modifications for the two different material classes
explicitly described. Throughout this work, the term “materials” will

be used generically to encompass molecules to crystals, while the
more precise terms “molecules” and “crystals” will be used to refer to
collections of atoms without and with lattice periodicity, respectively.

Let V, E, and u denote the atomic (node/vertex), bond (edge), and
global state attributes, respectively. For molecules, bond information
(e.g., bond existence, bond order, and so on) is typically provided as
part of the input definition. For crystals, a bond is loosely defined
between atoms with distance less than certain cutoff. Following the
notation of Battaglia et al.,39 V is a set of vi, which is an atomic
attribute vector for atom i in a system of Nv atoms. E = {(ek, rk,
sk)}k=1:N

e are the bonds, where ek is the bond attribute vector for bond
k, rk and sk are the atom indices forming bond k, and Ne is the total
number of bonds. Finally, u is a global state vector storing the
molecule/crystal level or state attributes (e.g., the temperature of the
system).

A graph network module (Figure 1) contains a series of update
operations that map an input graph G = (E, V, u) to an output graph
G′ = (E′, V′, u′). First, the attributes of each bond (ek, rk, sk) are
updated using attributes from itself, its connecting atoms (with
indices rk and sk), and the global state vector u, as follows

ϕ′ = ⊕ ⊕ ⊕e v v e u( )k s r ke k k (1)

where ϕe is the bond update function and ⊕ is the concatenation
operator. Next, the attributes of each atom vi are updated using
attributes from itself, the bonds connecting to it, and the global state
vector u, as follows
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ϕ′ = ̅ ⊕ ⊕v v v u( )i i iv
e

(3)

where Ni
e is the number of bonds connected to atom i and ϕv is the

atom update function. The aggregation step (eq 2) acts as a local
pooling operation that takes the average of bonds that connect to the
atom i.

The first two update steps contain localized convolution operations
that rely on the atom-bond connectivity. One can imagine that if more
graph network modules are stacked, atoms and bonds will be able to
“see” longer distances, and hence, longer-range interactions can be
incorporated even if the initial distance cutoff is small to reduce the
computational task.

Finally, the global state attributes u are updated using information
from itself and all atoms and bonds, as follows

Figure 1. Overview of a MEGNet module. The initial graph is represented by the set of atomic attributes V = {vi}i=1:N
v , bond attributes E = {(ek, rk,

sk)}k=1:N
e , and global state attributes u. In the first update step, the bond attributes are updated. Information flows from atoms that form the bond,

the state attributes, and the previous bond attribute to the new bond attributes. Similarly, the second and third steps update the atomic and global
state attributes, respectively, by information flow among all three attributes. The final result is a new graph representation.
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ϕ′ = ̅ ⊕ ̅ ⊕u u u u( )u
e v

(6)

where ϕu is the global state update function. In addition to providing
a portal to input state attributes (e.g., temperature), u also acts as the
global information placeholder for information exchange on larger
scales.
The choice of the update functions ϕe, ϕv, and ϕu largely

determines the model performance in real tasks. In this work, we
choose the ϕs to be multilayer perceptrons with two hidden layers (eq
7), given their ability to be universal approximators for nonlinear
functions.40

ζ ζϕ = + + +x W W W x b b b( ) ( ( ( ( )) ))3 2 1 1 2 3 (7)

where ζ is the modified softplus function10 acting as a nonlinear
activator, Ws are the kernel weights, and bs are the biases. Note that
the weights for atom, bond, and state updates are different. Each fully
connected layer will be referred to as a “dense” layer using keras41

terminology.
To increase model flexibility, two dense layers are added before

each MEGNet module to preprocess the input. This approach has
been found to increase model accuracy. We define the combination of
the two dense layers with a MEGNet module as a MEGNet block, as
shown in Figure 2. The block also contains residual netlike42 skip

connections to enable deeper model training and reduce over-fitting.
Multiple MEGNet blocks can be stacked to make more expressive
models. In the final step, a readout operation reduces the output
graph to a scalar or vector. In this work, the order-invariant set2set
model43 that embeds a set of vectors into one vector is applied on
both atomic and bond attribute sets. After the readout, the atomic,
bond, and state vectors are concatenated and passed through
multilayer perceptrons to generate the final output. The overall
model architecture is shown in Figure 2. If the atom features are only
the integer atomic numbers, an embedding layer is added after the
atom inputs V.
Atomic, Bond, and State Attributes. Table 1 summarizes the

full set of atomic, bond, and state attributes used as inputs to the
MEGNet models. The molecule attributes are similar to the ones used

in the benchmarking work by Faber et al.32 For crystals, only the
atomic number and spatial distance are used as atomic and bond
attributes, respectively.

Data Collections. The molecule data set used in this work is the
QM9 data set33 processed by Faber et al.32 It contains the B3LYP/6-
31G(2df,p)-level density functional theory (DFT) calculation results
on 130 462 small organic molecules containing up to 9 heavy atoms.

The crystal data set comprises the DFT-computed energies and
band gaps of 69 640 crystals from the Materials Project15 obtained via
the Python Materials Genomics (pymatgen)44 interface to the
Materials Application Programming Interface (API)45 on June 1,
2018. We will designate this as the MP-crystals-2018.6.1 data set to
facilitate future benchmarking and comparisons as data in the
Materials Project is constantly being updated. The crystal graphs were
constructed using a radius cutoff of 4 Å. Using this cutoff, 69 239
crystals do not form isolated atoms and are used in the models. All
crystals were used for the formation energy model and the metal
against the nonmetal classifier, while a subset of 45 901 crystals with a
finite band gap was used for the band gap regression. A subset of 5830
structures have elasticity data that do not have calculation warnings
and will be used for elasticity models.

Model Construction and Training. A customized Python
version of MEGNet was developed using the keras API41 with the
tensorf low backend.46 Because molecules and crystals do not have the
same number of atoms, we assemble batches of molecules/crystals

Figure 2. Architecture for the MEGNet model. Each model is formed
by stacking MEGNet blocks. The embedding layer is used when the
atom attributes are only atomic numbers. In the readout stage, a
set2set neural network is used to reduce sets of atomic and bond
vectors into a single vector. The numbers in brackets are the number
of hidden neural units for each layer. Each MEGNet block contains a
MEGNet layer as well as two dense layers. The “add” arrows are skip
connections to enable deep model training.

Table 1. Atomic, Bond, and State Attributes Used in the
Graph Network Models

system level
attributes
name description

molecule atom atom type H, C, O, N, F (one-hot)
chirality R or S (one-hot or null)
ring sizes for each ring size (3−8), the number

of rings that include this atom. If
the atom is not in a ring, this field
is null

hybridization sp, sp2, sp3 (one-hot or null)
acceptor whether the atom is an electron

acceptor (binary)
donor whether the atom donates electrons

(binary)
aromatic whether the atom belongs to an

aromatic ring (binary)
bond bond type single, double, triple, or aromatic

(one-hot or null)
same ring whether the atoms in the bond are in

the same ring (binary)
graph distance shortest graph distance between

atoms (1−7). This is a topological
distance. For example, a value of 1
means that the two atoms are
nearest neighbors, whereas
a value of 2 means they are second
nearest neighbors, etc.

expanded
distance

distance r valued on Gaussian basis
exp(−(r − r0)

2/σ2), where r0 takes
values at 20 locations linearly
placed between 0 and 4, and the
width σ = 0.5

state average atomic
weight

molecular weight divided by the
number of atoms (float)

bonds per
atom

average number of bonds per atom
(float)

system level
attributes
name description

crystal atom Z the atomic number of element (1−94)
bond spatial

distance
expanded distance with Gaussian basis
exp(−(r − r0)

2/σ2) centered at 100 points
linearly placed between 0 and 5 and
σ = 0.5

state two zeros placeholder for global information exchange
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into a single graph with multiple targets to enable batch training. The
Adam optimizer47 was used with an initial learning rate of 0.001,
which is reduced to 0.0001 during later epochs for tighter
convergence.
Each data set is divided into three partstraining, validation, and

test. For the molecule models, 90% of the data set was used for
training and the remaining were divided equally between validation
and test. For the crystal formation energy models, 60 000 crystals
were used for training and the remaining were divided equally
between validation and test for direct comparison to the work of
Schütt et al.36 For the band gap classification models and elastic
moduli models, an 80:10:10 split was applied. All models were trained
on the training set, and the configuration and hyperparameters with
the lowest validation error were selected. Finally, the test error is
calculated. During training, the validation error is monitored and the
training is stopped when the validation error does not improve for
500 consecutive epochs. The models were trained on Nvidia GTX
1080Ti GPUs. On average, it takes 80 s and 110 s per epoch for each
molecular and crystal model, respectively. Most models reach
convergence within 1000 epochs. However, models for U0, U, H, G,
and ⟨R2⟩ require 2000−4000 epochs. The embedding dimension is
set to 16. The elemental embeddings trained on the formation energy
using one MEGNet block were transferred to the band gap regression
model and kept fixed. We use the same architecture featuring three
MEGNet blocks in the models for crystals.
Data and Model Availability. To ensure reproducibility of the

results, the MP-crystals-2018.6.1 data set used in this work has been
made available as a JavaScript Object Notation file at https://figshare.
com/articles/Graphs_of_materials_project/7451351. The graph net-
work modules and overall models have also been released as open-
source code in a Github repository at https://github.com/
materialsvirtuallab/megnet.

■ RESULTS
Performance on QM9 Molecules. Table 2 shows the

comparison of the mean absolute errors (MAEs) of 13
properties for the different models, and the convergence plots
with the number of training data are shown in Figure S1. It can
be seen that the MEGNet models using the full set of attributes

(“full” column in Table 2) outperform the state-of-art
SchNet36 and MPNN enn-s2s models37 in all but two of the
propertiesthe norm of dipole moment μ and the electronic
spatial extent R2. Out of 13 properties, only the errors on zero-
point vibrational energy (ZPVE) (1.40 meV) and band gap
(Δϵ) (0.060 eV) exceed the thresholds for chemical accuracy.
The errors of various properties follow Gaussian distributions,
as shown in Figure S2.
We note that the atomic and bond attributes in Table 1

encode redundant information. For example, the bond type
can usually be inferred from the bonding atoms and the spatial
distance. We therefore developed “simple” MEGNet models
that utilize only the atomic number and spatial distance as the
atomic and bond attributes, respectively. These are the same
attributes used in the crystal MEGNet models. From Table 2,
we may observe that these simple MEGNet models achieve
largely similar performance as the full models, with only
slightly higher MAEs that are within chemical accuracy and still
outperforming prior state-of-the-art models in 8 of the 13
target properties. It should be noted, however, that the
convergence of the “simple” models is slower than the “full”
models for certain properties (e.g., μ, ZVPE). This may be due
to the models having to learn more complex relationships
between the inputs and the target properties.

Unified Molecule Free Energy Model. To achieve the
results presented in Table 2, one MEGNet model was
developed for each target, similar to previous works.36,37

However, this approach is extremely inefficient when multiple
targets are related by a physical relationship and should share
similar features. For instance, the internal energy at 0 K (U0)
and room temperature (U), enthalpy (H = U + PV), and Gibbs
free energy (G = U + PV − TS) are all energy quantities that
are related to each other by temperature (T), pressure (P),
volume (V), and entropy (S). To illustrate this concept, we
have developed a combined free energy model for U0, U, H,
and G for the QM9 data set by incorporating the temperature,

Table 2. Comparison of MAEs of 13 Properties in the QM9 Data Set for Different Modelsa,b

MEGNet-fullc MEGNet-simpled

property units (this work) (this work) SchNet36 enn-s2s37 benchmark32 target

ϵHOMO eV 0.038±0.001 0.043 0.041 0.043 0.055e 0.043
ϵLUMO eV 0.031±0.000 0.044 0.034 0.037 0.064e 0.043
Δϵ eV 0.061±0.001 0.066 0.063 0.069 0.087e 0.043
ZPVE meV 1.40±0.06 1.43 1.7 1.5 1.9g 1.2
μ D 0.040 ± 0.001 0.050 0.033 0.030 0.101e 0.1
α bohr3 0.083±0.001 0.081 0.235 0.092 0.161f 0.1
⟨R2⟩ bohr2 0.265 ± 0.001 0.302 0.073 0.180 1.2
U0 eV 0.009±0.000 0.012 0.014 0.019 0.025g 0.043
U eV 0.010±0.000 0.013 0.019 0.019 0.043
H eV 0.010±0.000 0.012 0.014 0.017 0.043
G eV 0.010±0.000 0.012 0.014 0.019 0.043
Cv cal (mol K)−1 0.030±0.001 0.029 0.033 0.040 0.044g 0.05
ω1 cm−1 1.10±0.08 1.18 1.9 2.71h 10

aThe “benchmark” column refers to the best model in the work by Faber et al.,32 and the “target” column refers to the widely accepted thresholds
for “chemical accuracy”.32 The standard deviations in the MAEs for the MEGNet-full models over three randomized training:validation:test splits
are also provided. bϵHOMO: highest occupied molecular orbital; ϵLUMO: lowest unoccupied molecular orbital; Δϵ: energy gap; ZPVE: zero-point
vibrational energy; μ: dipole moment; α: isotropic polarizability; ⟨R2⟩: electronic spatial extent; U0: internal energy at 0 K; U: internal energy at 298
K; H: enthalpy at 298 K; G: Gibbs free energy at 298 K; Cv: heat capacity at 298 K; ω1: highest vibrational frequency.

cFull MEGNet models using
all listed features in Table 1. The optimized models for ZPVE, ⟨R2⟩, μ, and ω1 contain five, five, three, and one MEGNet blocks, respectively, while
the optimized models for all other properties use two MEGNet blocks. dSimple MEGNet models using only the atomic number as the atomic
feature, expanded distance as bond features, and no dummy state features. All models contain three MEGNet blocks. eGraph convolution with a
molecular graph feature.34 fGated-graph neural network with a molecular graph feature.35 gKernel-ridge regression with histograms of distances,
angles, and dihedrals. hRandom forest model with bonds, angles, ML feature.
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pressure (binary), and entropy (binary) as additional global
state attributes in u, that is, (0, 0, 0), (298, 0, 0), (298, 1, 0),
and (298, 1, 1) for U0, U, H, and G, respectively. Using the
same architecture, this combined free energy model achieves
an overall MAE of 0.010 eV for the four targets, which is
comparable to the results obtained using the separate MEGNet
models for each target.
In principle, the combined free energy model should be able

to predict free energies at any temperature given sufficient
training data. Indeed, the predicted U at 100 and 200 K
matches well with our DFT calculations (see Figure S3), even
though these data points were not included in the training
data. However, the predicted H and G at the same
temperatures show large deviations from the DFT results.
We hypothesize that this is due to the fact that only one
temperature data for these quantities exist in the training data
and that the addition of H and G data at multiple temperatures
into the training data would improve the performance of the
unified free energy MEGNet model.
Performance on Materials Project Crystals. Table 3

shows the comparison of the performance of the MEGNet

models against the SchNet36 and CGCNN models.9 The
convergence of formation energy model is shown in Figure S4.
We may observe that the MEGNet models outperform both

the SchNet and CGCNN models in the MAEs of the
formation energies Ef, band gap Eg, bulk modulus KVRH, and
shear modulus GVRH. It should be noted that these results
especially the prediction of Eg and the metal/nonmetal
classifiersare achieved over much diverse data sets than
previous works, and the prediction error in Ef, Eg, KVRH, and
GVRH is well within the DFT errors in these quantities.48−52

The MEGNet models, similar to the SchNet models, utilize
only one atomic attribute (atomic number) and one bond
attribute (spatial distance), while nine attributes were used in
the CGCNN model. We also found that transferring the
elemental embeddings from the Ef model, which was trained
on the largest data set, significantly accelerates the training and
improves the performance of the Eg, KVRH, and GVRH models.
For example, an independently trained model (without transfer
learning) for Eg has a higher MAE of 0.38 eV.
We note that the data set used in the development of the

CGCNN model is significantly smaller than that of MEGNet
or SchNet, despite all three models having obtained their data
from the Materials Project. The reason is that crystals with
warning tags or without band structures were excluded from
the CGCNN model training. Using this exclusion strategy and
a similar training data size, the MEGNet models for formation
energy and band gap have MAEs of 0.032 eV atom−1 and 0.35
eV, respectively. The accuracies for metal and nonmetal
classifiers are increased to 82.7 and 93.1%, respectively.
There are also nongraph-based crystal ML models such as

the JARVIS-ML model53 and the AFLOW-ML model.54 The
MAEs of the JARVIS-ML models53 for formation energy, band
gap, bulk moduli, and shear moduli are 0.12 eV atom−1, 0.32
eV, 10.5 GPa, and 9.5 GPa, respectively, while the MAEs of
AFLOW-ML models54 for band gap, bulk moduli, and shear
moduli are 0.35 eV, 8.68 GPa, and 10.62 GPa, respectively.
However, these ML models are developed with very different
data sets (e.g., the JARVIS-DFT database contains formation
energies, elastic constants, and band gaps for bulk and 2D
materials computed using different functionals) and are
therefore not directly comparable to the MEGNet, SchNet,
or CGCNN models, which are all trained using Materials
Project data.
Figure 3a,b provides a detailed analysis of the MEGNet

model performance on Ef. The parity plot (Figure 3a) shows
that the training and test data are similarly well-distributed, and
consistent model performance is achieved across the entire
range of Ef. We have performed a sensitivity analysis of our
MEGNet Ef model to various hyperparameters. Increasing the

Table 3. Comparison of the MAEs in the Formation Energy
Ef, Band Gap Eg, Bulk Modulus KVRH, Shear Modulus GVRH,
and Metal/Nonmetal Classification between MEGNet
Models and Prior Works on the Materials Project Data Seta

units MEGNet SchNet36 CGCNN9

elements 89 89 87
Ef eV atom−1 0.028 ± 0.000

(60 000)
0.035 (60
000)

0.039 (28
046)

Eg eV 0.33 ± 0.01 (36
720)

0.388 (16
485)

KVRH log10 (GPa) 0.050 ± 0.002
(4664)

0.054
(2041)

GVRH log10 (GPa) 0.079 ± 0.003
(4664)

0.087
(2041)

metal
classifier

78.9% ± 1.2%
(55 391)

80% (28
046)

nonmetal
classifier

90.6% ± 0.7%
(55 391)

95% (28
046)

aThe number of structures in the training data is in parentheses. The
standard deviations in the MAEs for the MEGNet models over three
randomized training:validation:test splits are also provided.

Figure 3. Performance of MEGNet models on the Materials Project data set. (a) Parity plots for the formation energy of the training and test data
sets. (b) Plot of average MAE for each element against the number of training structures containing that element. (c) ROC curve for test data for
the MEGNet classifier trained to distinguish metals against nonmetals.
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radius cutoff to 6 Å slightly increases the MAE to 0.03 eV
atom−1. Using one or five MEGNet blocks instead of three
results in MAEs of 0.033 and 0.027 eV atom−1, respectively.
Hence, we can conclude that our chosen radius cutoff of 4 Å
and model architecture comprising three MEGNet blocks are
reasonably well-optimized. Figure 3b plots the average test
MAEs for each element against the number of training
structure containing that element. In general, the greater the
number of training structures, the lower the MAE for
structures containing that element. Figure 3c shows the
receiver operating characteristic (ROC) curve for the metal/
nonmetal classifier. The overall test accuracy is 86.9%, and the
area under curve for the receiver operation conditions is 0.926.

■ DISCUSSION
It is our belief that the separation of materials into molecules
and crystals is largely arbitrary, and a true test of any structured
representation is its ability to achieve equally good perform-
ance in property prediction in both domains. We have
demonstrated that graph networks, which provide a natural
framework for representing the attributes of atoms and the
bonds between them, are universal building blocks for highly
accurate prediction models. Our MEGNet models, built on
graph network concepts, show significantly improved accu-
racies over prior models in most properties for both molecules
and crystals.
A key advance in this work is the demonstration of the

incorporation of global state variables to build unified models
for related properties. A proof of concept is shown in our
unified molecule free energy MEGNet model, which can
successfully predict the internal energy at multiple temper-
atures, enthalpy, and Gibbs free energy with temperature,
entropy, and pressure as global state variables. This stands in
sharp contrast to the prevailing approach in the materials ML
community of building single-purpose models for each
quantity, even if they are related to each other by well-
known thermodynamic relationships. The unification of related
models has significant advantages in that one can achieve
multifold increases in training data with minimal increase in
model complexity, which is particularly important given the
relatively small data sets available in materials science.
Interpretability. For chemistry and materials science

applications, a particularly desirable feature for any representa-
tion is interpretability and reproduction of known chemistry
intuition.55 To this end, we have extracted the elemental
embeddings from the MEGNet model for crystal formation
energy. As shown in Figure 4, the correlations between the
elemental embeddings correctly recover the trends in the
periodic table of the elements. For example, the alkaline, alkali,
chalcogen, halogen, lanthanoid, transition metals, post-
transition metals, metalloid, and actinoid show highest
similarities within their groups. It is important to note that
the extracted trends reproduce well-known “exceptions” in the
periodic arrangement of atoms as well. For example, the fact
that Eu and Yb do not follow the lanthanoids but are closer to
alkaline earth elements (Figure S6) is in good agreement with
chemical intuition and matches well with the structure graphs
proposed by Pettifor.56 Furthermore, these trends are obtained
from the diverse Materials Project dataset encompassing most
known crystal prototypes and 89 elements, rather than being
limited to specific crystal systems.57,58

Such embeddings obtained from formation energy models
are particularly useful for the development of models to predict

stable new compounds or as features for other ML models.
Hautier et al.59 previously developed an ionic substitution
prediction algorithm using data mining, which has been used
successfully in the discovery of several new materials.60,61 The
ion similarity metric therein is purely based on the presence of
ions in a given structural prototype, a slightly coarse-grained
description. Here, the MEGNet models implicitly incorporate
the local environment of the site and should in principle better
describe the elemental properties and bonding relationships.
We note that with more MEGNet blocks, the contrast of the
embeddings between atoms is weaker, as shown in Figure S5.
The two-dimensional t-SNE plots62 confirm these conclusions,
as shown in Figure S6. This is because with more blocks, the
environment seen by the atom spans a larger spatial region,
and the impact of geometry becomes stronger, which obscures
the chemical embeddings.

Composability. A further advantage of the graph network-
based approach is its modular and composable nature. In our
MEGNet architecture, a single block captures the interactions
between each atom and its immediate local environment
(defined via specified bonds in the molecule models and a
radius cutoff in the crystal models). Stacking multiple blocks
allows for information flow and hence capturing of
interactions, across larger spatial distances.
We can see this effect in the MEGNet models for the QM9

data set, where different numbers of blocks are required to
obtain good accuracy for different properties. For most
properties, two blocks are sufficient to achieve MAEs within
chemical accuracy. However, more blocks are necessary for the
ZPVE (five), electronic spatial extent (five), and dipole
moment (three), which suggests that it is important to capture
longer-ranged interactions for these properties. In essence, the
choice of number of MEGNet blocks for a particular property
model boils down to a consideration of the range of
interactions necessary for accurate prediction, or simply
increasingly the number of blocks until convergence in
accuracy is observed.

Figure 4. Pearson correlations between elemental embedding vectors.
Elements are arranged in order of increasing Mendeleev number56 for
easier visualization of trends.
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Data Limitations and Transfer Learning. The critical
bottleneck in building graph networks models, like all other
ML models, is data availability. For instance, we believe that
the inability of the unified free energy MEGNet model to
accurately predict H and G at 100 and 200 K is largely due to
the lack of training data at those temperatures. Similarly, a
general inverse relationship can be seen between the number
of training structures and the average MAE in formation
energies of the crystals in Figure 3b.
Besides adding more data (which is constrained by

computational cost as well as chemistry considerations),
another avenue for improvement is to use ensemble models.
We tested this hypothesis by training two independent three
block MEGNet models and used the average as the ensemble
prediction for the formation energies of the Materials Project
data set. The MAE reduces from 0.028 eV atom−1 for a single
MEGNet model to 0.024 eV atom−1 for the ensemble
MEGNet model.
Yet, another approach to address data limitations is transfer

learning,63,64 and we have demonstrated an instructive example
of how this can be applied in the case of the crystal MEGNet
models. Data quantity and quality is a practical problem for
many materials properties. Using the Materials Project as an
example, the formation energy data set comprises ∼69 000
crystals, that is, almost all computed crystals in the database.
However, only about half of these have nonzero band gaps.
Less than 10% crystals in Materials Project have computed
elastic constants because of the high computational effort in
obtaining these properties. By transferring the elemental
embeddings, which encode the learned chemical trends from
the much larger formation energy data set, we were able to
efficiently train the band gap and elastic moduli MEGNet
models and achieve significantly better performance than prior
ML models. We believe this to be a particularly effective
approach that can be extended to other materials properties
with limited data availability.

■ CONCLUSIONS
To conclude, we have developed MEGNet models that are
universally high performing across a broad variety of target
properties for both molecules and crystals. Graphs are a natural
choice of representation for atoms and the bonds between
them, and the sequential update scheme of graph networks
provides a natural approach for information flow among atoms,
bonds, and global state. Furthermore, we demonstrate two
advancesincorporation of global state inputs and transfer
learning of elemental embeddingsin this work that extend
these models further to state-dependent and data-limited
properties. These generalizations address several crucial
limitations in the application of ML in chemistry and materials
science and provide a robust foundation for the development
of general property models for accelerating materials discovery.
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