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ABSTRACT: Machine learning of the quantitative relationship
between local environment descriptors and the potential energy
surface of a system of atoms has emerged as a new frontier in the
development of interatomic potentials (IAPs). Here, we present a
comprehensive evaluation of machine learning IAPs (ML-IAPs)
based on four local environment descriptorsatom-centered
symmetry functions (ACSF), smooth overlap of atomic positions
(SOAP), the spectral neighbor analysis potential (SNAP)
bispectrum components, and moment tensorsusing a diverse
data set generated using high-throughput density functional theory
(DFT) calculations. The data set comprising bcc (Li, Mo) and fcc
(Cu, Ni) metals and diamond group IV semiconductors (Si, Ge) is
chosen to span a range of crystal structures and bonding. All
descriptors studied show excellent performance in predicting energies and forces far surpassing that of classical IAPs, as well as
predicting properties such as elastic constants and phonon dispersion curves. We observe a general trade-off between accuracy and
the degrees of freedom of each model and, consequently, computational cost. We will discuss these trade-offs in the context of model
selection for molecular dynamics and other applications.

■ INTRODUCTION

A fundamental input for atomistic simulations of materials is a
description of the potential energy surface (PES) as a function
of atomic positions. While quantum mechanical descriptions,
such as those based on Kohn−Sham density functional theory
(DFT),1,2 are accurate and transferable across chemistries,
their high cost and poor scaling (typically O(ne

3) or higher,
where ne is the number of electrons)3−5 limits simulations to
∼1000 atoms and hundreds of picoseconds. Hence, large-scale
and long-time simulations traditionally rely on interatomic
potentials (IAPs), which to date are in most cases empirical
parametrizations of the PES based on physical functional forms
that depend only on the atomic degrees of freedom.6−8 IAPs
gain linear scaling with respect to the number of atoms at the
cost of accuracy and transferability.
In recent years, a modern alternative has emerged in the

form of machine learning IAPs (ML-IAPs), where the PES is
described as a function of local environment descriptors that
are invariant to translation, rotation, and permutation of
homonuclear atoms.9,10 Examples of such potentials include
the high-dimensional neural network potential (NNP),11,12 the
Gaussian approximation potential (GAP),10,13,14 the spectral

neighbor analysis potential (SNAP),15−18 and moment tensor
potentials (MTP),19−21 among others.22−35 A typical approach
to training such potentials involves the generation of a
sufficiently large and diverse data set of atomic configurations
with corresponding energies, forces and stresses from DFT
calculations, which are then used in the training of the ML-IAP
based on one or several target metrics, such as minimizing the
mean absolute or squared errors in predicted energies, forces,
stresses, or derived properties (e.g., elastic constants). ML-
IAPs have been shown to be a remarkable improvement over
traditional IAPs, in general, achieving near-DFT accuracy in
predicting energies and forces across diverse chemistries and
atomic configurations. Despite the fact that recent benchmark
efforts36−38 have demonstrated the remarkable performance of
ML-IAPs, a critical gap that remains is a rigorous assessment of
the relative strengths and weaknesses of ML-IAPs across a
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standardized data set, similar to what has been done for
classical IAPs.39−41

In this work, we present a comprehensive performance
comparison of four major ML-IAPsGAP, MTP, NNP, and
SNAP. The four ML-IAPs were evaluated in terms of their
accuracy in reproducing DFT energies and forces, as well as
material properties such as the equations of state, lattice
parameter and elastic constants. An attempt was also made to
assess the training data requirements of each ML-IAP and the
relative computational cost based on the best-available current
implementations. To ensure a fair comparison, standardized
DFT data sets of six elements (Li, Mo, Cu, Ni, Si, and Ge)
with the same training/test sampling and similar fitting
approaches were used. The elements were chosen to span
diverse chemistries and bonding, e.g., bcc and fcc metals, main
group and transition metals, and group IV semiconductors.

■ METHODS
Machine Learning Interatomic Potentials. The four

ML-IAPs investigated in this work have already been
extensively discussed in previous works and reviews.9−21,42−45

All ML-IAPs express the potential energy surface as a sum of
atomic energies that are a function of the local environment
around each atom, but differ in the descriptors for these local
environments and the ML approach/functional expression
used to map the descriptors to the potential energy surface.
The detailed formalism of all four ML-IAPs are provided in the
Supporting Information. Here, only a concise summary of the
key concepts and model parameters behind the ML-IAPs in
chronological order of development is provided to aid the
reader in following the remainder of this paper.
1. High-Dimensional Neural Network Potential (NNP).

The NNP uses atom-centered symmetry functions (ACSF)46

to represent the atomic local environments and fully connected
neural networks to describe the PES with respect to symmetry
functions.11,12 A separate neural network is used for each atom
and each neural network processes the symmetry functions
from local environments of the corresponding atom and
outputs its atomic energy. The architecture of the neural
network is defined by the number of hidden layers and the
nodes in each layer, while the descriptor space is given by the
following symmetry functions:
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Here Rij is the distance between atom i and neighbor atom j, η
is the width of the Gaussian, and Rs is the position shift over all
neighboring atoms within the cutoff radius Rc, η′ is the width
of the Gaussian basis and ζ controls the angular resolution.
fc(Rij) is a cutoff function, defined as follows:
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These hyperparameters were optimized to minimize the root-
mean-square errors of energies and forces for each chemistry.
The NNP model has shown great performance for Si,11

TiO2,
47 water48 and solid−liquid interfaces,49 metal−organic

frameworks,50 and has been extended to incorporate long-
range electrostatics for ionic systems such as ZnO51 and
Li3PO4.

52

2. Gaussian Approximation Potential (GAP). The GAP
calculates the similarity between atomic configurations based
on a smooth-overlap of atomic positions (SOAP)10,53 kernel,
which is then used in a Gaussian process model. In SOAP, the
Gaussian-smeared atomic neighbor densities ρi(R) are
expanded in spherical harmonics as follows:
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The spherical power spectrum vector, which is in turn the
square of expansion coefficients,
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can be used to construct the SOAP kernel while raised to a
positive integer power ζ to accentuate the sensitivity of the
kernel:10
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In the above equations, σatom is a smoothness controlling the
Gaussian smearing, and nmax and lmax determine the maximum
powers for radial components and angular components in
spherical harmonics expansion, respectively.10 These hyper-
parameters, as well as the number of reference atomic
configurations used in Gaussian process, are optimized in the
fitting procedure to obtain optimal performance. The GAP has
been developed for transition metals,13,14 main group
elements,54−56 and diamond semiconductors57,58 as well as
multicomponent systems.44

3. Spectral Neighbor Analysis Potential (SNAP). The
SNAP uses the coefficients of the bispectrum of the atomic
neighbor density functions10 as descriptors. In the original
formulation of SNAP, a linear model between energies and
bispectrum components is assumed.15 Recently, a quadratic
model (denoted as qSNAP in this work)59 has been developed,
which extends the linear SNAP model to include all distinct
pairwise products of bispectrum components. In this work,
both linear and quadratic SNAP models were investigated. The
critical hyperparameters influencing model performance are
the cutoff radius and Jmax, which limits the indices j1, j2, j in
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Here um, m′
j are coefficients in 4-dimensional hyper-spherical

harmonics expansion of the neighbor density function:
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The SNAP model as well as qSNAP model has demonstrated
great success in transition metals15−17,59 as well as binary
systems.17,18,45

4. Moment Tensor Potential (MTP). The MTP19 devises
rotationally covariant tensors
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to describe the atomic local environments. Here fμ are the
radial functions, and Rij ⊗ ··· ⊗ Rij are tensors of rank ν
encoding angular information about the atomic environment.
The rank ν can be large enough to approximate any arbitrary
interactions. MTP then contracts these tensors to a scalar that
yields rotationally invariant basis functions, and applies linear
regression to correlate the energies with the basis functions.
The performance of MTP is controlled by the polynomial
power-like metric, which defines what tensors and how many
times are contracted. The MTP model has been successfully
applied to metals,19,20,60 boron,61 and binary and ternary
alloys21 as well as gas-phase chemical reactions.62

DFT Data Sets. A comprehensive DFT data set was
generated for six elements - Li, Mo, Ni, Cu, Si, and Ge. These
elements were chosen to span a variety of chemistries (main
group metal, transition metal, and semiconductor), crystal
structures (bcc, fcc, and diamond) and bonding types (metallic
and covalent). For each element, we generated a set of
structures with diverse coverage of atomic local environment
space, as follows:

(1) The ground-state crystal for each element.
(2) Strained structures constructed by applying strains of

−10% to 10% at 2% intervals to the bulk supercell in six

different modes, as described in the work by de Jong et
al.63 The supercells used are the 3 × 3 × 3, 3 × 3 × 3,
and 2 × 2 × 2 of the conventional bcc, fcc, and diamond
unit cells, respectively.

(3) Slab structures up to a maximum Miller index of three,
including (100), (110), (111), (210), (211), (310),
(311), (320), (321), (322), (331), and (332), as
obtained from the Crystalium database.64,65

(4) NVT ab initio molecular dynamics (AIMD) simulations
of the bulk supercells (similar to those in point 2)
performed at 300 K and 0.5×, 0.9×, 1.5×, and 2.0× of
the melting point of each element with a time step of 2
fs. The bulk supercells were heated from 0 K to the
target temperatures and equilibrated for 20 000 time
steps. A total of 20 snapshots were obtained from the
subsequent production run in each AIMD simulation at
an interval of 0.1 ps. The radial distribution function
(RDF) analysis confirms that the structures obtained
from AIMD simulations above melting point are liquid-
like in the atomic environments (see Figure S1).

(5) NVT AIMD simulations of the bulk supercells (similar
to those in point 2) with a single vacancy performed at
300 K and 2.0× of the melting point of each element.
The bulk supercells were heated from 0 K to the target
temperatures and equilibrated for 20 000 time steps. A
total of 40 snapshots were obtained from the subsequent
production run of each AIMD simulation at an interval
of 0.1 ps.

All DFT calculations were carried out using the Vienna ab
initio simulation package (VASP)66 version 5.4.1 within the
projector augmented wave approach.67 The Perdew−Burke−
Ernzerhof (PBE) generalized gradient approximation (GGA)68

was adopted for the exchange-correlation functional. The
kinetic-energy cutoff was set to 520 eV and the k-point mesh

Figure 1. Machine learning interatomic potential development workflow.
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was 4 × 4 × 4 for the Mo, Ni, Cu, Si, and Ge supercells, and 3
× 3 × 3 for the Li supercells. The electronic energy and atomic
force components were converged to within 10−5 eV and 0.02
eV/Å, respectively, in line with previous works.16,17 The AIMD
simulations were carried out with a single Γ k point and were
non-spin-polarized, but static calculations using the same
parameters as the rest of the data were carried out on the
snapshots to obtain consistent energies and forces. All
structure manipulations and analyses of DFT computations
were carried out by using the Python Materials Genomics
(Pymatgen)69 library, and the automation of calculations was
performed by using the Fireworks software.70

Optimization Scheme. Figure 1 provides an overview of
the general data generation and potential development scheme.
The training data set was first generated via DFT static
calculations on the four categories of structures. The
optimization procedure comprised two loops. In the inner
loop, sampled structures in the database were transformed into
atomic descriptors (e.g., bispectrum components for SNAP
and symmetry functions for NNP), which were then fed into
the corresponding ML model together with the DFT energies
and forces as the targets of training. The data was apportioned
into training and test sets with a 90:10 split. The parameters of
the ML models were optimized during the training process. In
the outer loop, the ML model trained in the inner loop was
used to predict basic material properties (e.g., elastic tensors),
and the differences between the predicted and reference values
were then used to determine the optimal hyperparameters for
each ML-IAP. In this work, we adopted a combination of the
grid search algorithm and differential evolution algorithm to
perform hyperparameters optimization for different ML-IAPs.
Data and Code Availability. To facilitate the reuse and

reproduction of our results, the code, data and optimized ML
models in this work are published open-source on Github
(https://github.com/materialsvirtuallab/mlearn). The code
includes high-level Python interfaces for ML-IAPs develop-
ment as well as LAMMPS material properties calculators.

■ RESULTS
Optimized Model Parameters. The optimized coeffi-

cients and hyperparameters for each ML-IAP are reported in
Supporting Information (see Tables S1−S11). Here, we will
limit our discussions to a parameter that is common to all ML-
IAPsthe cutoff radiusand present a convergence study of
each ML-IAP with the number of degrees of freedom of the
model.
The cutoff radius determines the maximum range of

interatomic interactions, and hence, has a critical effect on
the prediction performance of ML-IAPs. Table 1 provides the
optimized cutoff radii of different ML-IAPs across different

chemistries. Different ML-IAPs yield similar optimized cutoff
radii for the same elemental system. The optimized cutoff radii
are between the second nearest neighbor (2NN) and 3NN
distance for fcc elements (Cu, Ni), between 3NN and 4NN
distances for the bcc (Li, Mo) and diamond (Ge and Si)
elements. These observations are consistent with those from
previous traditional and ML-IAP development efforts, where
typically 2NN interactions are found to suffice for fcc
metals,71,72 while contributions from 3NN cannot be ignored
for bcc metals13,19,20,73,74 and diamond systems.75,76

The number of degrees of freedom (DOF), e.g., the number
of weights and biases for the NNP and number of
representative points in GAP, has a strong effect on the
accuracy and computational cost of each ML-IAP. Figure 2
illustrates the trade-off between computational cost and test
error under varying DOFs for each fitted Mo ML-IAP. Similar
results are obtained for other systems (see Figures S5−S10). It
should be noted that the relative computational costs are based
on the most efficient available implementations10,15,19,59,77 of
each ML-IAP at this time in LAMMPS78 and performed on a
single CPU core of Intel i7-6850k 3.6 GHz with 18 × 18 × 18
bulk supercell containing 11 664 atoms for the Mo system.
Future implementations and optimizations, such as to the
evaluation of the local environment descriptor, may improve
on these results, as discussed in a recent work.79 A dashed
Pareto frontier is drawn in Figure 2a to represent points at
which better accuracy can only be attained at the price of
greater computational cost80 and the black arrows indicate
“optimal” configurations for each model in terms of the trade-
off between test error and computational cost. These “optimal”
configurations were used for subsequent accuracy comparisons
in energies, forces and properties. We find that the “optimal”
MTP, NNP, SNAP, and qSNAP models tend to be 2 orders of
magnitude less computationally expensive than the “optimal”
GAP model. The MTP models generally lie close to the Pareto
frontier, exhibiting an excellent balance between model
accuracy and computational efficiency. For the SNAP and
qSNAP models, the descriptor space (i.e., bispectrum
components) is determined by the parameter Jmax. We find
that the rate-limiting step is the calculation of bispectrum and
the computation of quadratic terms in qSNAP has only a
marginal effect on the computational cost.59 However, we find
that the substantial expansion in the number of DOF in the
qSNAP model leads to overfitting for larger values of Jmax (see
Figure 2b), which can be attributed to the large number of
fitted coefficients of its formalism. For the GAP model, the
computational cost is linearly related to the number of kernels
used in Gaussian process regression.13 It should be noted that
classical IAPs remain substantially lower in computational cost
than ML-IAPs by 2−3 orders of magnitude. The computa-
tional time for prediction using all ML-IAPs and equivalent
classical IAPs are given in Table S12.

Accuracy in Energies and Forces. Figure 3 provides a
comparison of the root-mean-square errors (RMSEs) in
energies and forces for the four ML-IAPs and best-available
classical IAPs relative to DFT. All ML-IAPs show extremely
good performance across all elements studied, achieving
RMSEs in energies and forces that are far lower than best-
available traditional IAPs for each element. It should be noted
that differences in RMSEs between ML-IAPs are on the scale
of meV atom−1 in energies and 0.1 eV Å−1 in forces; hence, any
subsequent discussion on the relative performances of the ML-
IAPs should be viewed in the context that even the largest

Table 1. Optimized Cutoff Radius for Each Element for
Each ML-IAP

cutoff radius (Å)

fcc bcc diamond

Ni Cu Li Mo Si Ge

GAP 3.9 3.9 4.8 5.2 5.4 5.4
MTP 4.0 3.9 5.1 5.2 4.7 5.1
NNP 3.9 4.1 5.2 5.2 5.5 5.6
SNAP 4.1 4.1 5.1 4.6 4.9 5.5
qSNAP 3.8 3.9 5.1 5.2 4.8 4.9
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differences in accuracy between the ML-IAPs are already close
to the limits of DFT error. In all cases, the training and test
errors are similar, indicating no overfitting for the optimized
ML-IAPs. The energy and force errors of ML-IAPs are
marginally larger than those reported in a recent work81 on Cu
and Ge. However, this is likely due to the fact that the data in
this work contain a diverse range of structures sampled from
AIMD simulations at a much larger time intervals (0.1 ps vs 10
fs in the previous work) as well as strained structures, surface
structures, and vacancy-containing structures.
The GAP and MTP models generally have the lowest

RMSEs in energies and forces. The highest RMSEs in energies
are observed for the SNAP models and NNP models. It is well-
known that neural network-based models often require larger
data sets for best performance; previous NNP models have
been trained on thousands or tens of thousands of
structures,36,82 while only hundreds of structures are used in

training the current ML-IAPs. Nevertheless, the NNP models
still show surprisingly good performance for bcc systems. The
qSNAP models’ performances are between those of the GAP
and NNP. In general, the qSNAP models have moderately
lower RMSEs than the linear SNAP, though at the expense of a
large expansion in the number of parameters.
In terms of chemistries, we find that the lowest RMSEs in

energies are observed for the fcc systems, followed by the bcc
systems, and the highest RMSEs are observed for the diamond
systems. Very low RMSEs in forces are observed across all ML-
IAPs for Cu, Ni, and Li, while relatively higher RMSEs in
forces are observed for Mo, a metal with higher modulus and
larger force distributions. Higher RMSEs in forces are also
observed for the diamond semiconductors. These trends are
generally consistent across all ML-IAPs studied. The RMSEs
normalized to the ground state energy per atom for each
element is given in Figure S2) further supports the better

Figure 2. (a) Test error versus computational cost for the Mo system. The gray dashed line indicates an approximate Pareto frontier formed by the
convex hull of points lying on the bottom left of the chart. This Pareto frontier represents an optimal trade-off between accuracy and computational
cost. Timings were performed by LAMMPS calculations on a single CPU core of Intel i7-6850k 3.6 GHz. Black arrows denote the “optimal”
configuration for each ML-IAP that was used in subsequent comparisons. (b) Plots of the training and test errors versus the number of degrees of
freedom for each ML-IAP.
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accuracy for the metals (both fcc and bcc) relative to the
diamond systems, and the much better performance of the
ML-IAPs over the classical IAPs.
We have also performed a study of the convergence of the

ML-IAPs with training data size using Mo as the benchmark
system given that it is a bcc metal (for which traditional IAPs
tend to perform poorly) with large force distributions. Here,
the length of the AIMD simulations was increased 4-fold, and

more training structures were sampled at the same time
interval. The convergence results are shown in Figure 4. While
the prediction errors of all models decrease with increase in the
number of training structures, the most substantial improve-
ments in accuracy, especially in predicted energies, are
observed for the NNP and qSNAP models. The SNAP Mo
model appears to have converged in energy and force at a
training data size of ∼400 structures, respectively. For the

Figure 3. Root-mean-square errors in (a) predicted energies and (b) predicted forces for all four ML-IAPs as well as traditional IAPs (EAM,83,84

MEAM,85−87 Tersoff88,89). The upper left and lower right triangles within each cell represent training and test errors, respectively.

Figure 4. RMSEs in predicted (a) energies and (b) forces of the test set versus the size of the training data for the ML-IAP Mo models.
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Table 2. Calculated Cubic Lattice Parameter a, Elastic Constants (cij), Voigt−Reuss−Hill Bulk Modulus (BVRH), Migration
Energy (Em), and Vacancy Formation Energy (Ev) as Well as Activation Barrier for Vacancy Diffusion (Ea = Ev + Em) with DFT
and the Four ML-IAPsa

DFT GAP MTP NNP SNAP qSNAP

Ni
a (Å) 3.508 3.523 (0.4%) 3.522 (0.4%) 3.523 (0.4%) 3.522 (0.4%) 3.521 (0.4%)
c11 (GPa) 276 281 (1.8%) 284 (2.9%) 274 (−0.8%) 283 (2.5%) 267 (−3.3%)
c12 (GPa) 159 159 (0.0%) 172 (8.2%) 169 (6.3%) 168 (5.7%) 155 (−2.5%)
c44 (GPa) 132 126 (−4.5%) 127 (−3.8%) 113 (−14.4%) 129 (−2.3%) 125 (−5.3%)
BVRH (GPa) 198 200 (1.0%) 209 (5.6%) 204 (3.0%) 206 (4.0%) 193 (−2.5%)
Ev (eV) 1.49 1.46 (−2.0%) 1.43 (−4.0%) 1.65 (10.7%) 1.47 (−1.3%) 1.47 (−1.3%)
Em (eV) 1.12 1.14 (1.8%) 1.11 (−0.9%) 1.14 (1.8%) 1.12 (0.0%) 1.05 (−6.3%)
Ea (eV) 2.61 2.60 (−0.4%) 2.54 (−2.7%) 2.79 (6.9%) 2.59 (−0.8%) 2.52 (−3.4%)

Cu
a (Å) 3.621 3.634 (0.4%) 3.636 (0.4%) 3.637 (0.4%) 3.634 (0.4%) 3.636 (0.4%)
c11 (GPa) 173 175 (1.2%) 177 (2.3%) 182 (5.2%) 178 (2.9%) 178 (2.9%)
c12 (GPa) 133 120 (−9.8%) 120 (9.8%) 125 (−6.0%) 126 (−5.3%) 124 (−6.8%)
c44 (GPa) 88 82 (−6.8%) 81 (−8.0%) 76 (−13.6%) 86 (−2.3%) 82 (−6.8%)
BVRH (GPa) 146 138 (−5.5%) 139 (−4.8%) 144 (−1.4%) 143 (−2.1%) 142 (−2.7%)
Ev (eV) 1.15 1.05 (−8.7%) 1.10 (−4.3%) 1.23 (7.0%) 1.19 (3.5%) 1.15 (0.0%)
Em (eV) 0.79 0.76 (−3.8%) 0.77 (−2.5%) 0.77 (−2.5%) 0.82 (3.8%) 0.74 (−6.3%)
Ea (eV) 1.94 1.81 (−6.7%) 1.87 (−3.6%) 2.00 (3.1%) 2.01 (3.6%) 1.89 (−2.6%)

Li
a (Å) 3.427 3.450 (0.7%) 3.446 (0.6%) 3.434 (0.2%) 3.506 (2.3%) 3.469 (1.2%)
c11 (GPa) 15 18 (20.0%) 14 (−6.7%) 17 (13.3%) 18 (20.0%) 12 (−20.0%)
c12 (GPa) 13 14 (7.7%) 13 (0.0%) 12 (−7.7%) 7 (−46.2%) 6 (−53.8%)
c44 (GPa) 11 12 (9.1%) 11 (0.0%) 12 (9.1%) 10 (−9.1%) 11 (0.0%)
BVRH (GPa) 14 15 (7.1%) 13 (−7.1%) 13 (−7.1%) 11 (−21.4%) 8 (−42.9%)
Ev (eV) 0.62 0.56 (−9.7%) 0.53 (−14.5%) 0.50 (−19.4%) 0.63 (1.6%) 0.58 (−6.5%)
Em (eV) 0.06 0.06 (0.0%) 0.08 (33.3%) 0.05 (−16.7%) 0.09 (50.0%) 0.09 (50.0%)
Ea (eV) 0.68 0.62 (−8.8%) 0.61 (−10.3%) 0.55 (−19.1%) 0.72 (5.9%) 0.67 (−1.5%)

Mo
a (Å) 3.168 3.168 (0.0%) 3.169 (0.0%) 3.165 (−0.1%) 3.169 (0.0%) 3.170 (0.1%)
c11 (GPa) 472 481 (1.9%) 472 (0.0%) 441 (−6.6%) 457 (−3.2%) 436 (−7.6%)
c12 (GPa) 158 169 (7.0%) 154 (−2.5%) 192 (21.5%) 158 (0.0%) 166 (5.1%)
c44 (GPa) 106 112 (5.7%) 103 (−2.8%) 114 (7.5%) 109 (2.8%) 104 (−1.9%)
BVRH (GPa) 263 271 (3.8%) 260 (−1.1%) 266 (1.1%) 258 (−1.9%) 256 (−2.7%)
Ev (eV) 2.70 2.68 (−0.7%) 2.61 (−3.3%) 2.94 (8.9%) 2.72 (0.7%) 2.79 (3.3%)
Em (eV) 1.22 1.60 (31.1%) 1.51 (23.8%) 1.59 (30.3%) 1.49 (22.1%) 1.50 (23.0%)
Ea (eV) 3.92 4.28 (9.2%) 4.12 (5.1%) 4.53 (15.6%) 4.21 (7.4%) 4.29 (9.4%)

Si
a (Å) 5.469 5.458 (−0.2%) 5.465 (−0.1%) 5.501 (0.6%) 5.466 (0.1%) 5.464 (−0.1%)
c11 (GPa) 156 168 (7.7%) 155 (−0.6%) 141 (−9.6%) 128 (−17.9%) 155 (−0.6%)
c12 (GPa) 65 62 (−4.6%) 76 (16.9%) 62 (−4.6%) 75 (15.4%) 58 (−10.8%)
c44 (GPa) 76 69 (−9.2%) 75 (−1.3%) 55 (−27.6%) 71 (−6.6%) 69 (−9.2%)
BVRH (GPa) 95 97 (2.1%) 102 (7.4%) 89 (−6.3%) 93 (−2.1%) 90 (−5.3%)
Ev (eV) 3.25 3.04 (−6.5%) 3.11 (−4.3%) 2.60 (−20.0%) 2.71 (−16.6%) 2.37 (−27.1%)
Em (eV) 0.21 0.21 (0.0%) 0.16 (−23.8%) 0.21 (0.0%) 0.26 (23.8%) 0.20 (−4.7%)
Ea (eV) 3.46 3.25 (−6.1%) 3.27 (−5.5%) 2.81 (−18.8%) 2.97 (−14.2%) 2.57 (−25.7%)

Ge
a (Å) 5.763 5.777 (0.2%) 5.770 (0.1%) 5.789 (0.5%) 5.773 (0.2%) 5.775 (0.2%)
c11 (GPa) 116 127 (9.5%) 106 (−8.6%) 98 (−15.5%) 101 (−12.9%) 121 (4.3%)
c12 (GPa) 48 45 (−6.3%) 54 (12.5%) 54 (12.5%) 41 (−14.6%) 43 (−10.4%)
c44 (GPa) 58 54 (−6.9%) 55 (−5.2%) 43 (−25.9%) 54 (−6.9%) 50 (−13.8%)
BVRH (GPa) 71 72 (1.4%) 71 (0.0%) 69(−2.8%) 61 (−14.1%) 69 (−2.8%)
Ev (eV) 2.19 2.10 (−4.1%) 1.98 (−9.6%) 1.97 (−10.0%) 1.77 (−19.2%) 1.67 (−23.7%)
Em (eV) 0.19 0.17 (−10.5%) 0.17 (−10.5%) 0.20 (5.3%) 0.28 (47.4%) 0.18 (−5.3%)
Ea (eV) 2.38 2.27 (−4.6%) 2.15 (−9.7%) 2.18 (−8.8%) 2.05 (−13.9) 1.85 (−22.3%)

aLowest absolute errors with respect to DFT for each property are bolded for ease of reference. Error percentages with respect to DFT values are
shown in parentheses.
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qSNAP, additional training structures offer modest improve-
ments in force accuracy, but large improvements in energy
accuracy, which implies qSNAP has a higher “learning rate” in
terms of energy accuracy and a lower “learning rate” in terms
of force accuracy than NNP. This can also be seen in Figure
S3, which showed the log−log plot of accuracies versus the size
of training data and the slope of the line as the “learning
capability” of different ML-IAPs. Indeed, it is possible that the
NNP and qSNAP Mo models have not been converged with
respect to accuracy in energies even at ∼800 training
structures. We have not attempted to further converge these
models in view of the computational expense involved.
Accuracy in Material Properties. The accuracy in

predicting basic material properties is critical for evaluating
the performance of ML-IAPs. Here, we perform the climbing-
image nudged elastic band (CI-NEB) method90 as well as
molecular dynamics (MD) with ML-IAPs to obtain the cubic
lattice parameter, elastic constants, migration energies and
vacancy formation energies. The comparison of these predicted
material properties with respect to the DFT values is provided
in Table 2. The performances of all ML-IAPs are generally
excellent, with lattice parameters within 0.1−2.0% of the DFT
values and elastic constants that are typically within 10% of
DFT values. It should be noted that the large percentage error
in Li for elastic constants is due to the small reference values.
The MTP, SNAP, and qSNAP models perform well on elastic
constants on fcc and bcc systems, but they exhibit slightly

higher prediction errors in the diamond systems. A possible
explanation for the slightly poorer prediction of elastic
constants of the NNP model could be the limitation of the
size of training data, which restricts the potential of a fully
connected neural network. However, it should be noted that
despite the slightly higher prediction errors of elastic
components for the NNP model, its prediction errors of
Voigt−Reuss−Hill approximated bulk modulus91 across
various elemental systems are in good agreement with DFT
reference values.
In terms of diffusion properties, the GAP and MTP models

perform well across different chemistries, with most of the
prediction errors within 10% of DFT values, albeit with a
moderate underestimate of the migration energy for diamond
systems, in line with the previous study.57 While SNAP and
qSNAP models show high accuracy in predicting diffusion
properties for fcc systems, they considerably underestimate the
vacancy formation energy as well as activation barrier for
diamond systems. It is noteworthy that all ML-IAPs over-
estimate the migration energy of Mo system by more than
20%, which has also been observed in a previous work.16

We have also calculated the relaxed (011) γ surface for the
generalized stacking faults (GSFs) along the [1̅1̅1] direc-
tion86,92 for Mo, (111) glide plane along the [112]
direction57,93 for Si, and (111) γ surface along the [112]
direction94,95 for Ni and Cu, as these have been already been
studied extensively in previous works.57,86,92−95 From Figure 5

Figure 5. Cross sections of the relaxed γ surfaces calculated with all four ML-IAPs with respect to DFT reference data.57,86,95 (a) Relaxed (011) γ
surface along the [1̅1̅1] direction for Mo. (b) Relaxed (111) glide plane along the [112] direction for Si. (c) Relaxed (111) γ surface along the
[112] direction for Ni. (d) Relaxed (111) γ surface along the [112] direction for Cu.
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and Table 3, it can be observed that all ML-IAPs are able to
reproduce the major qualitative features of the relaxed (011) γ
surface and the correct trend in the unstable stacking fault
energy for all four systems. The MTP models generally yield

γus that are closest to DFT for Si (111)[112], Ni(111)[112],
and Cu(111)[112]. All ML-IAPs significantly underestimate
the Mo(011)[1̅1̅1] γ surface, which is consistent with previous
ML-IAP studies of bcc metals.15 The NNP models exhibit the

Table 3. Calculated Unstable Stacking Fault Energy γus of (011) γ Surface along the [1 ̅1̅1] Direction for Mo, (111) Glide Plane
along the [112] Direction for Si, and (111) γ Surface along the [112] Direction for Ni and Cua

γus (mJ/m2)

Mo (011) [1̅1̅1] Si (111) [112] Ni (111) [112] Cu (111) [112]

DFT 167786 174057 28995 16495

GAP 1324 (−21.0%) 1858 (6.8%) 308 (6.6%) 177 (7.9%)
MTP 1333 (−20.5%) 1747 (0.4%) 288 (−0.3%) 173 (5.5%)
NNP 1130 (−32.6%) 1849 (6.3%) 248 (−14.2%) 145 (−11.6%)
SNAP 1354 (−19.3%) 1528 (−12.2%) 292 (1.0%) 172 (4.9%)
qSNAP 1387 (−17.3%) 1965 (12.9%) 277 (−4.2%) 151 (−7.9%)

aLowest absolute errors with respect to DFT are bolded for ease of reference. Error percentages with respect to DFT values are shown in
parentheses.

Figure 6. Assessment of accuracy of ML-IAPs in predicting equation of state. (a) Δ gauge comparison provides quantitative estimate of deviation
between the EOS curve from each ML-IAP with that of DFT. (b) EOS curves for all six elements using DFT and the four ML-IAPs.
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largest deviation from DFT for Mo(011)[112], Ni(111)[112],
and Cu(111)[112] γ surfaces. In particular, the NNP models
predict a symmetric γ surface with a near-zero intrinsic stacking
fault energy for the fcc metals Ni and Cu.
Accuracy in Equations of State. To provide an

evaluation of the performance of ML-IAPs far from
equilibrium, we have computed a pairwise comparison of the
equation of state (EOS) curves for all elements studied using
the ΔEOS gauge of Lejaeghere et al.96−98 The ΔEOS gauge,
which has been used to evaluate accuracy differences between
DFT codes, is the root-mean-square difference between two
EOS curves over a ± 6% interval around the equilibrium
volume, defined as follows:

E V E V dV

V

( ) ( )

0.12
V

V

EOS
0.94

1.06 a b 2

0

0

0∫
Δ =

[ − ]

(8)

where Ea and Eb denote energies computed using methods a
and b, respectively.
Figure 6 shows the ΔEOS values of various machine learning

models with respect to DFT reference data for different
elemental systems as well as the EOS curves of these ML-IAPs.
In all cases, the ΔEOS for all ML-IAPs for all elements are
within 2 meV/atom, which is the threshold for “indistinguish-
able EOS” previously used in evaluating different DFT codes.99

It is noteworthy that despite the relatively high prediction
errors of SNAP models presented in Figure 3a, they perform
considerably better in predicting the EOS curves, with all the
ΔEOS lower than 1 meV/atom across different chemistries. The
NNP models deviate slightly from DFT curves at both tensile
and compressive strains for fcc systems, while for diamond
systems, the deviation of the NNP models from DFT curve is
comparable with those of GAP and MTP models, as evidenced
in Δgauge comparison. In general, it is more challenging to
give highly accurate predictions of EOS in diamond system
than in fcc and bcc systems. In addition to the DFT-level
accuracy in equations of state prediction, the predicted phonon
dispersion curves by all ML-IAPs investigated in this work are
in excellent agreement with the DFT reference (see Figures
S5−S10 in the Supporting Information).
Accuracy in Molecular Dynamics (MD) Trajectories.

One of the principal applications of ML-IAPs is in molecular
dynamics (MD) simulations. To assess the ability of the ML-
IAPs to provide stable MD trajectories, we carried out NVT
MD simulations at 1300 K (0.5× melting point) on a 3 × 3 ×
3 54-atoms supercell of bulk Mo for 0.25 ns using LAMMPS
with the different ML-IAPs. A total of 40 snapshots at an
interval of 2.5 ps were sampled from each MD trajectory, and

DFT static calculations were performed on these snapshots.
Figure 7 shows the distribution of the errors in the energies
and forces of sampled structures. In line with the previous
results, the GAP and MTP models generally exhibit smaller
errors in the energies and forces than the NNP, SNAP, and
qSNAP models. The GAP model has not only the lowest
median but also the smallest interquartile range (IQR) in the
errors in energies and forces. Somewhat interestingly, the NNP
model has higher energy errors, but smaller force errors than
SNAP and qSNAP. For consistency of comparison, all models
shown here are the “optimal” models based on ∼100 training
structures. It is likely that a larger training set would improve
the performance of the NNP and qSNAP models. (Figure 4).

Accuracy in Polymorphic Energy Differences. To
evaluate the ability of the ML-IAPs to extrapolate to unseen
data, we have computed the energy differences between the
DFT ground state polymorph and a low-energy polymorph for
each element, presented in Figure 8. The low-energy
polymorphs correspond to the bcc, fcc, and wurtzite

Figure 7. Error distributions in (a) predicted energies and (b) predicted forces for sampled structures from MD simulations using each ML-IAP.
The rectangular box indicates the interquartile range (IQR), while the line within the box indicates the median.

Figure 8. Calculated energetic differences between the typical low
energy polymorph and ground-state polymorph of each elemental
system. The inset shows the magnified bar chart for Li system due to
its relatively small range. The typical low energy polymorph is
indicated with the label above each bar chart.
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(hexagonal diamond) structures for the fcc, bcc, and diamond
systems, respectively. It should be noted that only the ground
state structures were used in training the ML-IAPs, and these
low-energy polymorphs were not present in the training
structures. Except for Li which has an extremely small energy
difference between the fcc and bcc structures in DFT, all ML-
IAPs are able to reproduce qualitatively the energy difference
between polymorphs. For most systems, the ML-IAPs are able
to reproduce energy differences between the polymorphs to
within 10−20 meV/atom; the main exception is Mo, which
exhibits a large energy difference between the fcc and bcc
structures. One notable observation is that the GAP model
shows the largest error in predicting the energy difference
between the wurtzite and diamond structures in Si and Ge
compared to the other ML-IAPs, despite having relatively low
RMSE in predicted energies in these systems (see Figure 3a).
We believe that this may be due to the fact that the active
features in GAP diamond models did not cover the polymorph
phase region and the Gaussian process is sensitive to unseen
data, while the other IAPs are able to extrapolate the
interactions to this unseen configuration more effectively. To
test this hypothesis, we have constructed two additional Si
GAP models derived by augmenting the original Si GAP model
with (a) features close to the wurtzite polymorph, and (b)
features that are exactly correspond to the wurtzite polymorph.
As seen from Figure S4, the predicted energy differences
between the wurtzite and diamond polymorphs are much
closer to the DFT values for the augmented Si GAP models. A
principal component analysis further shows that the wurtzite
polymorph lies in a feature space that is not covered by the
original training data. Somewhat surprisingly, the linear SNAP
model exhibits among the best performance in reproducing the
polymorphic energy differences across all systems, out-
performing even the GAP and MTP for Mo, Si, and Ge,
despite having substantially larger RMSEs in energies and
forces.

■ CONCLUSIONS
We have performed a comprehensive unbiased evaluation of
the GAP, MTP, NNP, SNAP, and qSNAP ML-IAP models
using consistently generated DFT data on six elemental
systems spanning different crystal structures (fcc, bcc, and
diamond), chemistries (main group metals, transition metals,
and semiconductors) and bonding (metallic and covalent).
This evaluation is carried out across three key metrics that are
of critical importance for any potential user of these ML-IAPs:

1. Accuracy in predicted energies, forces and properties for
both seen and unseen structures;

2. Training data requirements, which influence the number
of expensive DFT computations that have to be
performed to train an ML-IAP to a given accuracy; and

3. Computational cost, which influences the size of the
systems on which computations can be performed for a
given computing budget.

These three metrics are inextricably linkedfor all the four
ML-IAPs, an increase in number of DOF (with increase in
computational cost) and increase in training structures
generally leads to higher accuracy, though diminishing returns
are observed beyond a certain number of DOFs. We
demonstrate the application of the Pareto frontier as a
means to identify the optimal trade-offs between these metrics.
For all ML-IAPs, we find that there is an “optimal”

configuration at which further expansion of the number of
DOF yields little improvement in accuracy with increases in
computational cost. We find that all ML-IAPs are able to
achieve near-DFT accuracy in predicting energies, forces and
material properties, substantially outperforming traditional
IAPs. The GAP and MTP models exhibit the smallest
RMSEs in energies and forces. However, the GAP models
are among the most computationally expensive for a given
accuracy (based on current implementations) and show poor
extrapolability to higher energy polymorphs in the diamond
systems. Indeed, the simple linear SNAP model, which has
among the highest RMSEs in predicted energies and forces,
show the best extrapolability to higher energy polymorphs as
well as reproducing the equations of state for the diamond
systems. The NNP and qSNAP models show relatively high
RMSEs in energies with small data sizes, but these can be
mitigated with increases in training data.
Another somewhat surprising conclusion is also that even

with relatively small training data sets of ∼100−200 structures,
the GAP, MTP, and SNAP models appear to be reasonably
well-converged to meV atom−1 accuracy in energies and 0.01
eV Å−1 accuracy in forces. The NNP and qSNAP models can
be further improved with larger training data sets, but the
RMSEs even at ∼100 structures are not excessively high. As
training cost is a key performance metric, we have not
attempted to further converge the NNP and qSNAP models
beyond ∼800 structures (Figure 4), which is already several
times the benchmarked training data set size. We attribute this
performance to the training data generation procedure, which
is aimed at sampling a diversity of structures from both ground
state and multitemperature AIMD simulations. In other words,
the diversity of training data is arguably a more important
consideration than quantity.
Finally, we will note several limitations of this study, which

are possible avenues for future work. First, no attempt was
made include nonelemental (binary, ternaries, etc.) systems in
this study for practical considerations of computational cost in
generating the large number of training structures needed and
the diverse range of bonding types (e.g., metallic, ionic,
covalent, and van der Waals, or a mixture of these). Second, we
have chosen to focus on only ML-IAPs based on local
environment descriptors. It should be noted that there are
similarities between some of the descriptors. Both the SOAP
and bispectrum (SNAP) descriptors are derived from the local
atomic density function, while the NNP and MTP are based
on parametrizations of the radial and angular distributions
using various basis functions. There are alternative ML-IAPs
that rely on global representations100 that were not covered in
this work. Finally, we have not attempted to combine the
different local environment descriptors (symmetry functions,
SOAP, bispectrum, moment tensors) with different ML
frameworks (linear regression, Gaussian process regression,
neural network, etc.). Instead, we rely on existing implementa-
tions of ML-IAPs as reported. The choice of descriptor affects
how efficiently diverse local environments can be encoded,
while the choice of ML framework determines the functional
flexibility in mapping the relationship between descriptors and
energies/forces. Ultimately, the performance of an ML-IAP is
related to the atomic environment descriptor and the ML
methodology. Our work has identified some differences in
performances as being related to the choice of the ML model.
For example, the quadratic qSNAP model can be converged to
substantially higher accuracies than the linear SNAP model,
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albeit at increased risk of overfitting. The poorer extrapolability
in the diamond systems and higher computational cost of the
GAP can be traced to the use of Gaussian process regression.
Constructing ML-IAPs using descriptor-model combinations
can potentially yield further insights into the interplay between
atomic descriptor and ML framework as well as better trade-
offs between accuracy and cost for a particular application.
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Kerber, R. N.; Marbella, L. E.; Grey, C. P.; Elliott, S. R.; Csańyi, G.
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