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Automated generation and ensemble-learned matching of
X-ray absorption spectra
Chen Zheng1, Kiran Mathew2, Chi Chen1, Yiming Chen1, Hanmei Tang1, Alan Dozier3, Joshua J. Kas4, Fernando D. Vila4, John J. Rehr4,
Louis F. J. Piper5,6, Kristin A. Persson2 and Shyue Ping Ong 1

X-ray absorption spectroscopy (XAS) is a widely used materials characterization technique to determine oxidation states,
coordination environment, and other local atomic structure information. Analysis of XAS relies on comparison of measured spectra
to reliable reference spectra. However, existing databases of XAS spectra are highly limited both in terms of the number of
reference spectra available as well as the breadth of chemistry coverage. In this work, we report the development of XASdb, a large
database of computed reference XAS, and an Ensemble-Learned Spectra IdEntification (ELSIE) algorithm for the matching of
spectra. XASdb currently hosts more than 800,000 K-edge X-ray absorption near-edge spectra (XANES) for over 40,000 materials
from the open-science Materials Project database. We discuss a high-throughput automation framework for FEFF calculations, built
on robust, rigorously benchmarked parameters. FEFF is a computer program uses a real-space Green’s function approach to
calculate X-ray absorption spectra. We will demonstrate that the ELSIE algorithm, which combines 33 weak “learners” comprising a
set of preprocessing steps and a similarity metric, can achieve up to 84.2% accuracy in identifying the correct oxidation state and
coordination environment of a test set of 19 K-edge XANES spectra encompassing a diverse range of chemistries and crystal
structures. The XASdb with the ELSIE algorithm has been integrated into a web application in the Materials Project, providing an
important new public resource for the analysis of XAS to all materials researchers. Finally, the ELSIE algorithm itself has been made
available as part of veidt, an open source machine-learning library for materials science.
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INTRODUCTION
X-ray absorption spectroscopy (XAS) is a widely used technique in
the study of the properties, physical states, and local environ-
ments of materials.1–3 When incident X-ray photons with energy
greater than the binding energy are absorbed by an atom, a core-
level electron is removed from its quantum level. In XAS, the
absorption coefficient, μ(E) is measured as a function of X-ray
energy E. Detailed descriptions of X-ray absorption theory and
equation have been included in many excellent books and review
papers.4,5

The X-ray absorption fine structure (XAFS) is typically divided in
to two regimes: X-ray absorption near-edge structure (XANES) and
extended X-ray absorption fine structure (EXAFS).6 The XANES is a
fingerprint of the oxidation states and coordination chemistries of
the absorbing atom. Quantitative XANES analyses are typically
difficult and are usually conducted in combination with principle
component analysis or least-squares fitting. The EXAFS provides
local atomic structure information, which can be extracted via
coupling with theoretically calculated XAFS spectra using well-
established software packages.7 One of the main challenges of
interpreting XANES and EXAFS lies in obtaining reference spectra
to fit the unknown spectra; measuring XAFS spectroscopy
experimentally is laborious and time-consuming, requiring X-ray

beams of finely tunable energy that are accessible only through
synchrotron radiation facilities.5 To the authors’ knowledge, open
reference databases usually contain at most hundreds of XAS
spectra. For example, the electron energy-loss spectroscopy (EELS)
database8 initiated in the 1990s contains 271 spectra, but only 21
of which are XAS spectra and 17 of which are K-edge spectra. EELS
is theoretically equivalent to X-ray absorption9 under common
acquisition conditions, but is of lower quality in terms of signal to
noise ratio and energy resolution. Most XAS data are available only
via publications in the literature, which cannot be extracted easily
for comparison.
In recent years, theoretical calculations of XAFS have become

more accurate and accessible due to the successful development
of ab initio codes, such as the FEFF program,10,11 as well as
advances in computing power. In this work, we will discuss the
development of a high-throughput framework to generate a
reference XAS database (XASdb) for all materials in the Materials
Project12 database. This framework combines the power of the
Python Materials Genomics (pymatgen) materials analysis library13

with the FireWorks workflow management software14 to carry out
hundreds of thousands of XAFS calculations using the FEFF9
code.10 This framework has been implemented in the Atomate
package.15 More importantly, we have developed a novel
automated XANES spectra matching algorithm that leverages
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ensemble learning techniques to identify similar XANES spectra
from our computed reference XASdb. We believe the combination
of the XASdb with these machine-learned spectra matching tools
will be an invaluable resource to the materials research commu-
nity by greatly enhancing the efficiency at which experimental
XAS spectra can be analyzed. It should be noted that this work
primarily focuses on common K-edge XANES spectra; higher edge
XANES and EXAFS computations and analysis are currently
ongoing and will be discussed in future publications.

RESULTS AND DISCUSSION
We have selected the latest version (v9) of the popular FEFF
program as our software of choice in this work. FEFF is a program
for ab initio multiple-scattering calculations of XAFS and various
other spectra for clusters of atoms. This choice is motivated by
three factors: (i) FEFF-computed spectra has been shown to yield
excellent agreement with experimentally measured spectra in a
broad range of studies;16–18 (ii) FEFF calculations are relatively
inexpensive compared to other approaches for computing XAS
spectra (e.g., a typical FEFF calculation takes < 1 h on a single
node, while multi-day, multi-core calculations are necessary for
DFT-based spectra calculations); and (iii) FEFF requires minimal
adjustable parameters. These three advantages make FEFF an
ideal candidate for automation to generate XAS spectra across a
broad range of chemistries. A key step in any automation
framework is benchmarking of computational parameters for
convergence and accuracy. The benchmarking dataset and criteria
are detailed in the Methods section. The Pearson correlation
coefficient, as given by the following expression, is used as the
benchmarking criterion.

SPearson X; Yð Þ ¼
PD

i¼1 Xi � X
� �

Yi � Y
� �ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPD

i¼1 Xi � X
� �2� � PD

i¼1 Yi � Y
� �2� �r ;

(1)

where Xi and Yi represent the absorption coefficients of two
spectra on the same energy grid. The value of Spearson can range
from −1 to 1, with a value of 1 being a perfect match. Used in this
context, the Pearson correlation coefficient is a similarity metric,
i.e., it measures the degree of similarity between two spectra.
We have tested the convergence of the FEFF calculated spectra

with respect to four parameters: the radius of the cluster
considered in the full multiple-scattering (FMS) calculation (self-
consistent field (SCF) rfms1), the total number of multiple-
scattering paths considered (FMS rfms), the exchange-correlation
potential (EXCHANGE), and the treatment of the core (COREHOLE)
(see Methods for a detailed description of the FEFF input file).
The SCF rfms1 was varied from 2 to 8 Å, and the spectrum at the

highest value (8 Å) was set as the reference for each material.
Figure 1 shows the computed Pearson correlation coefficients
between spectra computed at lower rfms1 and the reference. We
find that the computed spectra are converged (Spearson > 0.95) at
around rfms1= 6 Å for all material, though the Al K-edge for
aluminum nitride is converged only for rfms1= 6.5 Å. Given that
the computational cost increases substantially for rfms1 > 7 Å (see
Supplementary Fig. 1), we have chosen rfms1=7 Å as the default
setting for SCF in the high-throughput XANES computations.
The rfms field in the FMS card was varied from 3.0 to 11.0 Å at

1.0 Å intervals, and the spectrum at the highest value (11 Å) is set
as the reference for each material. We find that the computed
spectra are converged (Spearson > 0.95) around rfms= 9 Å for all
materials (see Supplementary Fig. 2(a)). Since the computational
cost increases substantially for rfms >9 Å (see Supplementary Fig.
2(b)), we have chosen rfms=9 Å as the default setting for FMS in
the high-throughput XANES computations.
In FEFF9, two approximations of the core-hole potentials have

been implemented, i.e., a fully screened potential based on the

final-state rule (FSR) and a linear random-phase-approximation
(RPA) screening. Systematic reviews of these two approaches have
been done by Rehr et al.19 We evaluated the performance of all
three core-hole options in FEFF9 on the computed K-edge XANES.
As shown in Supplementary Fig. 3(a), spectra obtained using both
the FSR and RPA are in much better agreement with experimental
results than ones without core-hole treatment. The spectra
computed without a core-hole treatment lack the edge enhance-
ment observed in the experiments. In general, spectra obtained
using FSR and RPA are similar (Supplementary Fig. 3(b)). We have
chosen RPA screening as the default setting for the high-
throughput XANES computations as the FSR might breakdown
for the L-shell metals.20

Similar evaluations of the EXCHANGE card options reveal that
the default Hedin-Lundquist model is the best option (see
Supplementary Fig. 4).

Sensitivity of computed XAS spectra to lattice parameters
The FEFF code uses a self-consistent DFT calculation of the Fermi
energy based on the real-space Green’s function (RSGF) approach
with muffin-tin potentials for a given lattice structure. Comparing
to the full-potential calculations, we find that the FEFF calculation
of the densities of states is typically in fairly good agreement with
DFT for many materials. In the Materials Project, the Perdew-
Berke-Ernzerhof (PBE)21 generalized gradient approximation func-
tional was used as the default for all relaxation calculations. As it is
well known that PBE leads to systematic errors of up to 5% in the
lattice parameters (with a tendency to overestimate),22–25 we
tested the sensitivity of computed XANES spectra to ±5% changes
in the lattice parameters. The results are shown in Fig. 2.
We find that the Fermi energy level of the spectrum is sensitive

to the lattice parameter variation (Fig. 2a). The Fermi energy level
shifts towards lower energy as the lattice parameter increases,
while the spacing of the spectral features contracts at the same
time. An example for Na K-edge of Na2O is shown in Fig. 2b, and
additional examples are available in Supplementary Fig. 5.
A portion of the Fermi energy shift can be attributed to the

artifacts of the FEFF’s potential approximation model (see
Supplementary Fig. 8). Nevertheless, the shape of the spectra
remains unchanged. While different corrections to eliminate the
artificial component of the dependence have been reported,26

these approaches are not amenable to a high-throughput
approach. Here, we note that due to the approximations used in

Fig. 1 Benchmarking results of rfms1 parameter in the SCF card for
K-edge XANES of various materials. The rfms1 parameter specifies
the radius of the cluster considered for the full multiple scattering
during self-consistent potential calculations. Pearson correlation
coefficients were calculated between spectra calculated at different
rfms1 and the reference calculated at rfms1=8.0 Å
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FEFF, we need to calibrate the Fermi level with experimental
spectra. Therefore, a pure energy shift only translates to an energy
calibration value in the post processing.
In summary, the PBE-relaxed structures from the Materials

Project can be used as the input for high-throughput XANES
calculations, even though there are other functionals27,28 that may
provide better lattice parameters estimates.29–32

Workflow and database
Using the high-throughput parameters outlined above, we
developed a high-throughput workflow for FEFF XAS calculations
within the open source computational materials science workflow
package Atomate.15 Atomate provides a high-level interface to
compose workflows using the widely used open source materials
science software such as Pymatgen,13 FireWorks,14 and Custodian.
The proposed default FEFF9 parameters have been implemented
as “input sets” in Pymatgen,13 which ensures reproducible and
automated generation of standardized input files for any material.
The compounds used in the high-throughput spectra generation
were obtained from the Materials Project database.12 For each
compound, the K-edge XANES spectrum was computed with each
symmetrically unique site in the structure as the absorbing atom.
All computed spectra, as well as accompanying meta-data (e.g.,

input structure, absorbing atom, materials project id, etc.), are
stored in a MongoDB database for on-demand querying and
retrieval of data. So far, K-edge XANES spectra have been
computed for more than 40,000 unique materials in the Materials
Project database, which amounts to over 800,000 K-edge spectra.
This is by far the largest repository of XANES spectra in the world,
and is growing rapidly. Future plans include the calculation of
XANES for L, M, and N shells as well as EXAFS spectra.

Spectra matching using ensemble learning
To extract the most utility and power from the XASdb, we have
developed a novel Ensemble-Learned Spectra IdEntification
(ELSIE) algorithm that allows for rapid identification of matching
spectra for any experimental XAS spectra. The main goal of
spectral matching is to obtain a list of compounds (the “hit list”)
whose spectra are most similar to that of the target spectrum. The
success and failure of matching is defined by the characteristics of
the spectrum. In the case of XANES spectra, the relevant
information to be extracted is the coordination environment
and oxidation state of the absorbing atom. As multiple materials
can have atoms in the same oxidation state and coordination
environment, we define the matching to be successful if the
correct coordination environment and oxidation state are within
the top entries.
The ELSIE algorithm uses the ensemble method to improve the

robustness of XAS identification. In ensemble learning, the core

concept is the combination of multiple weak learners to achieve
superior performance. It relies on the assumption that each weak
learner is better than a random guess, and each weak learner
captures different aspects of the problem. At the core of the
algorithm is the process of building individual weak learners.
Taking inspiration from the spectra matching algorithms for
Raman spectroscopy33 and other spectra,34,35 we broke down the
problem of matching XAS spectra into two main steps, namely
preprocessing and similarity computations. We define each weak
learner to be a combination of a preprocessor (a specific series of
preprocessing steps) with a similarity metric. Figure 3 provides an
overview of the ELSIE algorithm (see Methods section for the
details on the construction of the ELSIE algorithm).
We evaluated the ELSIE algorithm using 13 XANES spectra from

EELSDb (Supplementary Table 1), supplemented by six high-
quality experimental XANES spectra of V2O5, V2O3, VO2, LiNiO2,
LiCoO2, and NiO from previous studies.36,37 The inclusion of this
latter dataset is motivated by our desire to improve the diversity
of the test data, especially with regards to transition metal species.
The first step is to narrow down the candidate computed

reference spectra by the absorption element (A). Though this
information is usually known a priori, the characteristic XAS
absorption edge energy follows a power law with the atomic
number,5,6 which leads to clearly separated energy ranges. Hence,
we can identify the absorption element with 100% accuracy by
comparing the energy range of the target spectrum to tabulated
X-ray absorption edge data.38

Once the absorbing element A is identified, the computed
spectra of all materials within the same chemical system are
queried from the XASdb. For example, for the Al K-edge of Al2O3,
we include the Al K-edge spectra of all Al and AlxOy materials as
reference spectra. We excluded compounds with energy above
hull (Ehull) larger than 100 meV/atom since they are not likely to be
stable.39 For C K-edge XANES of the diamond structure (Fd3m), we
relaxed the constraint to 200meV/atom as the corresponding
entry (mp-66, diamond) has an Ehull of 136meV/atom. It should be
noted that though the individual absorption spectrum for each
symmetrically distinct site was computed for all crystal structures
in the Materials Project database, the reference spectra used for
comparison with the target spectra are constructed by summing
these individual spectra taking into account the site multiplicities.
To evaluate the overall performance of ELSIE, we looked at

three key metrics: (i) whether the correct structure is within the
top 5 ranked computed spectra, (ii) whether the top ranked entry
has the absorbing species in the correct oxidation state, and (iii)
whether the top ranked entry has the absorbing species in the
correct coordination environment, i.e., coordination number and
geometry. Where the exact structural information is not available
(e.g., in the experimental spectra from EELSdb), it is assumed that
those spectra correspond to the ground state structures in the

Fig. 2 a Relationship between the Fermi energy level of K-edge XANES and a lattice parameter changes. Fermi energy levels of the unstrained
structures are used as references. b Visualization of Na K-edge XANES spectra in Na2O (mp-2352) calculated with different applied strain values
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Materials Project database with the same chemical composition. It
should also be noted that some reference materials may have the
same element in multiple oxidation states and coordination
environments. Therefore, the application of metrics (ii) and (iii)
merely indicates whether at least one of the distinct sites in the
top entry have the correct oxidation state and coordination
environment. The results are summarized in Table 1.

Of the 19 test spectra, we find that the correct structure is
within the top 5 ranked structures for 11 systems, i.e., only 57.9%
accuracy. However, the correct oxidation state and coordination
environment are in the top entry for 16 and 15 systems, i.e.,
accuracies of 84.2% and 78.9%, respectively. The best coefficient α
is found to be 0.01. Given that XANES is a technique primarily used
to extract oxidation state and coordination environment

Identify 
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Peak Shifting / 

Alignment

Spectra Norm. 
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Feature Trans.

Intensity Norm.

Similarity 
Measure
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Fig. 3 Workflow schema of the Ensemble-Learned Spectra IdEntification (ELSIE) algorithm. The algorithm consists of two steps. In the first
step, the absorption species is identified and used to narrow down the candidate computed reference spectra. In the second step, the spectral
matching ensemble yields a rank-ordered list of computational spectra according to similarity with respect to the target spectrum
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information, these results are a major validation of the effective-
ness of the ELSIE matching algorithm.
To emphasize the effectiveness of the ensemble approach, we

also performed the same benchmark using a single learner
utilizing just the sigmoid squashing function and cosine similarity
measure on spectra that have been pre-normalized with respect
to summed intensity. The ELSIE algorithm outperforms the single
learner approach by 15.8% in identifying both the correct
oxidation state and coordination environment.
We will now illustrate the performance of our spectral matching

algorithm with a few case studies on diverse chemistries. For all
spectra, we have confined our comparison to the energy range
from −10 to 45 eV from the absorption edge, which is the region
typically referred to as XANES.

Case study 1: main group metals
Figure 4a, b shows the ELSIE spectral matching results of the Al K-
edge XANES of α-Al2O3 and Na K-edge XANES of NaCl,
respectively. For both target spectra, the correct oxidation states
and coordination environments are found in the top candidates.
Furthermore, we may observe that our proposed peak shifting
approach is effective in aligning the target and reference spectra.
Figure 4c shows a notable case—the Na K-edge of Na2O—

where the ELSIE algorithm fails. Here, the ELSIE algorithm returns
elemental Na as the top ranked result, as opposed to Na2O. The
main reason for this failure is that the FEFF-computed spectra is
not in good agreement with experimental spectra (see Supple-
mentary Fig. 7 for this and a few other examples). Possible
solutions include the use of real-space full-potential multiple-
scattering theory or other first principle approaches.40 For Na2O in
particular, we find that the experimental Na K-edge XANES of
Na2O is more similar to the computed Na K-edge XANES of
Na2CO3 (Supplementary Fig. 7(c)), which may indicate possible
contamination by the atmosphere in experiments.

Case study 2: transition metal oxides
Figure 5 shows the ELSIE spectra matching results of the Ni K-edge
XANES in NiO, Co K-edge XANES in LiCoO2. From Fig. 5a, we note
that although the computed peak positions and amplitude are not
in great quantitative agreement with the experimental measured
spectra, the ground state NiO entry is nevertheless returned as the
top ranked candidate. In particular, the small Ni 1s-3d peak at
8332 eV in the experimental Ni K-edge XANES of NiO is not
present in the FEFF calculated spectra. There is, however, a small
peak at 8337 eV in the FEFF calculated spectra, which we believe is
the Ni 1s-3d peak. The inaccuracy in the position of the peak may
be due to the muffin-tin approximation used in FEFF.
For LiCoO2 (Fig. 5b), the ground state structure of LiCoO2 (R3m)

is among the top five entries. All Co3+ ions in the top entry (Li
(CoO2)2) are in octahedral coordination, i.e., the same coordination
environment of Co3+ ions in LiCoO2 (R3m). We may, therefore,
conclude that the ELSIE algorithm performs satisfactorily in both
instances.
Figure 5c shows the ELSIE spectra matching results for the V K-

edge of V2O5 (Pmmn). The ELSIE algorithm fails to retrieve the
correct square-pyramidal coordination environment of V5+ in V2O5

(Pmmn). Indeed, vanadium ions in the top five matches returned
by the ELSIE algorithm are in octahedral coordination. Here, the
relative similarity of the V K-edge spectra for the different V
oxidation states and coordination environments seems to be the
key issue. Further structural refinement based on EXAFS simula-
tions, therefore, becomes critical, which will be available in the
XASdb in the near future.
In conclusion, we have demonstrated the development of a

large database for XAS using high-throughput FEFF calculations.
Parameter benchmark results indicate that the overall quality of
the FEFF9 calculations with default input parameters is in
quantitative agreement with experiments, which is adequate for
comparison purposes. We developed a novel spectra-matching
algorithm—the ELSIE algorithm—that enables the rapid matching
of computed reference spectra to any target spectra. The
ensemble learning approach far outperforms any single approach
based on a pre-defined set of preprocessing and similarity metric;
outstanding ~84 and ~79% accuracies in identifying the correct
oxidation state and coordination environment are demonstrated
based on a diverse test set comprising 19 experimental XANES
spectra. The XASdb with the ELSIE algorithm has been integrated
into a web application in the Materials Project, providing an
important new public resource for the analysis of XAS to all
materials researchers, and the ELSIE algorithm itself has been
made available as part of veidt, an open source machine-learning
library for materials science.

METHODS
Benchmarking details
Robust, well-defined datasets are necessary for any benchmarking
exercise. We have used the existing high-quality K-edge XAS spectra
available in the open EELS Data Base (EELSDb)8 as reference data, and
matched them with the corresponding materials in the Materials Project12

using the Materials API41 and pymatgen.13 For materials in the EELSDb
without structural information, ground state structures with identical
chemical compositions in the Materials Project were used. For spectra in
EELSDb taken using the same materials, we selected one and adopted it in
our study. Supplementary Table 1 summarizes the 13 unique materials
used in this work.

FEFF
The FEFF software calculates X-ray absorption spectra using the RSGF
formulation of the multiple-scattering theory.11 The X-ray absorption μ is
written in terms of the imaginary part of the one-particle Green’s function
G(r,r′; E), which incorporate both the inelastic losses and other quasiparticle

Table 1. Performance of ELSIE algorithm on 19 test spectra

Formula Space
group

Absorbing
species

Correct
structure
within
top 5
rank?

Correct
oxidation
state in
top
entries?

Correct
coordination
environment
in top entries?

SiO2 P3221 Si No Yes Yes

Si Fd3m Si Yes Yes Yes

AlPO4 I4 Al No Yes Yes

SiC F43m Si No Yes Yes

Al2O3 R3c Al Yes Yes Yes

Al Fm3m Al Yes Yes Yes

Na2O Fm3m Na Yes No No

C Fd3m C No Yes No

B2O3 P3221 B Yes No No

Si3N4 P31c Si Yes Yes Yes

Si3N4 P63=m Si Yes Yes Yes

AlN P63mc Al Yes Yes Yes

NaCl Fm3m Na Yes Yes Yes

V2O5 Pmmn V No Yes No

VO2 P21=c V No Yes Yes

V2O3 R3c V No Yes Yes

LiNiO2 R3m Ni No No Yes

NiO Fm3m Ni Yes Yes Yes

LiCoO2 R3m Co Yes Yes Yes
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(a) (b)

(c)

Fig. 4 Results of the similarity ranking returned by the ELSIE matching algorithm on a Al K-edge XANES of α-Al2O3 entry; b Na K-edge XANES
of NaCl; and c Na K-edge of Na2O. Detailed information about the retrieved compounds can be found in the Materials Project website, a Al2O3

(Pbcn, mp-1938), Al2O3 (Pna21, mp-2254), Al2O3 (R3c, mp-1143), and Al2O3 (C2/m, mp-7048), b NaCl (Fm3m, mp-22862), Na (Im3m, mp-127), Na
(P63/mmc, mp-10172) and Na (I43d, mp-567772), and c Na (Im3m, mp-127), Na (P63/mmc, mp-10172), Na2O (Fm3m, mp-2352), and Na (I43d,
mp-567772), in decreasing similarity order

(a) (b)

(c)

Fig. 5 Results of the similarity ranking returned by the ELSIE matching algorithm on a Ni K-edge XANES of NiO; b Co K-edge XANES of LiCoO2;
and c V K-edge of V2O5. Detailed information about the retrieved compounds can be found in the Materials Project website, a NiO (Fm3m, mp-
19009), NiO2 (P63/m1, mp-543096), NiO2 (R3m, mp-25593) and NiO (Fm3m, mp-715434), b Li(CoO2)2 (P2/m, mp-553952), Li6CoO4 (P42/nmc, mp-
18925), CoO2 (P3m1, mp-714976) and LiCoO2 (R3m, mp-24850), and c V2O5 (C2/c, mp-542844), VO2 (Pnnm, mp-714880), V6O13 (Cmcm, mp-
715617) and V9O17 (P1, mp-716723), in decreasing similarity order
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effects. In terms of G(r,r′; E), μ is given by:

μ ¼ � 1
π
Im c b2 � rG r; r0; Eð Þb2 � r0�� ��c� 	

θΓ E � EFð Þ; (2)

where θΓ is a broadened step function at the Fermi energy EF. This yields a
unified treatment of EXAFS and XANES. The treatment of X-ray absorption
can then be separated into atomic and scattering parts, i.e., G(r,r′; E) =GC(r,r
′; E)+GSC(r,r′; E). The exact result of GSC(r,r′; E) is given by the full matrix
inverse, or equivalently, a sum over all multiple-scattering paths.42 For the
XANES calculation, FEFF implements the FMS technique, which includes
the contributions from all orders of scattering within a cluster containing
the absorber and scatterers. The FEFF code also incorporates a GW-based
self-energy based on the Hedin-Lundqvist plasmon-pole model, which
includes effects of electron–electron interactions such as mean-free paths
and self-energy shifts. This method has been well tested and is usually a
good approximation for EXAFS and reasonable for XANES. FEFF includes a
screened corehole and gives results for excitonic enhancements compar-
able to GW/Bethe-Salpeter equation (BSE) calculations in many materials.
FEFF can also incorporate Debye-Waller factors using correlated-Debye or
more advanced models. Further details on the FEFF code and its
theoretical foundations can be found in ref. 11 for interested readers.
In the FEFF input file, parameters are specified in control “cards”. The

following parameters in FEFF were tested for convergence.

i. Self-consistent field (SCF): The rfms1 field in the SCF card specifies
the radius of the cluster considered in the FMS calculation. The
higher the rfms1 is, the greater the number of atoms is included in
calculation.

ii. Full multiple scattering (FMS): The rfms field in the FMS card
determines the total number of multiple-scattering paths consid-
ered in the XANES calculation. Default values are used for the other
five optional fields in the FMS card.

iii. EXCHANGE: The EXCHANGE card specifies the exchange-correlation
potential model used for XANES calculation. No shift was applied to
the Fermi energy level in this work, i.e., the second and third fields of
the EXCHANGE card were kept being 0.

iv. COREHOLE: The COREHOLE card is used to specify the treatment of
the core during XAS calculations. ‘‘Core hole’’ is the hole in the
orbital formed by the excitation of a single electron from that
orbital.5 In FEFF9 code, a combination of BSE and time-dependent
density functional theory (TDDFT) is used to improve the
approximation of the core hole interactions.10,20

ELSIE algorithm construction
We adopted the concept of ensemble method to index the most similar
spectra from the database with respect to a target spectrum. Each weak
learner has a unique combination of a few spectral preprocessing
techniques and one similarity metric, we will describe the preprocessing
approaches and similarity metrics in turn.
Each preprocessor comprises a series of steps, designed to emphasize or

weaken certain characteristics of the experimental and computed spectra.
A preprocessor is generated as follows:

1. Peak shifting and quantization: This step is necessary to all
preprocessors. Because of the differences in energy sampling
intervals and energy ranges, linear interpolation was used to
convert each spectrum to a vector of 200 intensity values with
identical energy grid. The reference spectra are shifted such that the
onset of absorption, which is well-defined by the photoelectric
effect, is aligned with that of the target spectra. This onset is
determined by ascertaining the lowest incident energy at which the
computed absorption intensity reaches 6% of the peak intensity.

2. Pre-normalization: We included an optional pre-normalization step
to rescale the intensity to a similar range. Given the spectrum X with
Xi represents the ith intensity, four normalization approaches are
adopted:43

Xnorm
i ¼ XiP

Xi
: (3)

Xnorm
i ¼ XiffiffiffiffiffiffiffiffiffiffiffiP

X2
i

p : (4)

Xnorm
i ¼ Xi � Xmin

Xmax � Xmin
: (5)

Xnorm
i ¼ Xi � μð Þ=σ,where μ ¼ P

Xi=n and

σ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX

Xi � μð Þ2=n
q

: (6)

3. Feature transformation: Several feature transformation functions
were implemented in the third step, which include the square root
and sigmoid squashing functions. The sigmoid squashed spectrum
is calculated using X 0 ¼ 1�cos πXð Þ

2 . The squared root squashing uses
X 0 ¼ ffiffiffi

X
p

, where X′ is the squashed new spectrum. This technique
has shown to improve the response sensitivity with respect to
different spectral features.44 The feature transformation functions
also include taking the first or second order derivative of spectrum,
or weighted the spectra with the first and second order derivatives.
This step is necessary to make distinct weak learners.

4. Normalization: This last step is for all preprocessors. The spectra are
all normalized such that the sum of intensities is equal to 1, i.e.PD

i¼1 Xi¼1.

Both the computed and target spectra are processed using the same
series of steps for each preprocessor.
The preprocessed target and computed spectra are then compared in a

pairwise manner using a similarity metric. Only bin-to-bin similarity metrics
are used in the ELSIE algorithm development as they are less
computationally demanding for high-throughput datasets.45 Four com-
monly used similarity metrics in the literatures are used in the ELSIE
algorithm:

1. Pearson correlation: as defined in the Benchmarking section.
2. Euclidean similarity: In the D-dimensional spectral feature space, the

Euclidean distance between two spectra X and Y is given by the
following equation:

dEuc¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXD

i¼1
Xi � Yij j2

r
: (7)

The spectral similarity measure can be derived from the distance
calculated using the following expression:

SEuc X; Yð Þ ¼ 1� dEuc X; Yð Þ
dmax
Euc

; (8)

where dmax
Euc is the absolute maximum expected Euclidean distance

between two probability mass functions.45

3. Cosine similarity: The cosine similarity measure is the normalized
inner product and measures the angle between two spectral
vectors.46 The cosine similarity between two spectra can be
calculated as:

SCos ¼
PD

i¼1 XiYiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPD
i¼1 X

2
i

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPD
i¼1 Y

2
i

q : (9)

4. Ruzicka similarity: The Ruzicka45 similarity between two spectra is
given by the following equation:

SRuz ¼
PD

i¼1 min Xi ; Yið ÞPD
i¼1 max Xi ; Yið Þ : (10)

The combination of preprocessors and similarity metrics results in a total
of 168 learners that can potentially be used to construct the ELSIE
algorithm. To make an ensemble that outperforms individual learners, one
prerequisite is that each learner should have an error rate lower than
random guessing. We, therefore, filtered the 168 leaners to 33 and
adopted them in the ELSIE algorithm. The detailed filtering procedure can
be found in the Supplementary Information.
For each target spectrum, each learner (one preprocessor+ one

similarity metric) outputs similarity scores for the reference spectra.
However, the quantitative scores for different similarity metrics cannot be
compared even for the same target spectrum. In the ELSIE algorithm, we
instead combine the reference spectra ranking from each learner to derive
an ensemble result. For a mixture of classifiers of various types, ranking-
based combination methods have been shown to be more reliable.47

Based on the rankings, we compute the Borda count, defined as the
number of candidates that are ranked equal and below the specific
candidate. For example, the top spectrum among ten computed
candidates would receive a Borda count of 10, while the second ranked
spectrum has a Borda count of 9. For each target spectrum, the Borda
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counts of the reference spectra under all learners are then summed to
arrive at a consensus ranking.48

Finally, the Borda ranks of all reference spectra are then combined with
a penalty term for the peak shift and converted to a probabilistic estimate
using the modified softmax function. The probability of a reference
spectrum Xk is indicated by P(Xk) where the superscript k indicates the k-th
spectrum, and is calculated as follows:

1. The Borda count of each reference (Rk) is normalized with respect to
the count sum: Rknorm ¼ RkP

Rk
This step is required to avoid the

exponential overflow.
2. P Xk

� �
is then calculated by the following equation:

P Xk
� � ¼ exp Rknorm

� �
exp � α ΔSkj j

δS


 �
P

exp Rknorm
� �

exp � α ΔSkj j
δS

� � ; (11)

where ΔSk could be calculated as ΔSk¼Sk � S:Sk is the peak shift amount
between the reference spectrum Xk and the target spectrum. S is the mean
peak shift of the reference spectra. δS is the standard deviation of Sk.

Coefficient α is fitted to the test dataset. exp � α ΔSkj j
δS


 �
is therefore a term

that imposes a larger penalty on large peak shifts relative to smaller peak
shifts.
The algorithm itself has been highly optimized by leveraging on well-

established numerical packages such as numpy and scipy.49,50 On a laptop
computer with Intel i5 2.6 GHz single CPU and 2 GB of RAM, the ELSIE
algorithm can perform a comparison between a target and candidate
spectrum in about 0.03 s. Typically, 20–30 spectra are selected for
comparison according to the rules that the computational reference
spectra should have identical absorption species, limited number of
elements and Ehull < 100meV/atom. The overall time to perform a
complete ranking is, therefore, around 1 s, which allows for on-the-fly
matching of uploaded spectra.

Data availability
The computed spectra in the XASdb have been made available in the
Materials Project website. A new web application—the XASApp (https://
materialsproject.org/#apps/xas/)—has been developed which allows any
user to compare multiple X-ray absorption spectra and find matches within
the XASdb for an uploaded spectrum using the ELSIE algorithm.
The ELSIE algorithm has also been made publicly available as a part of

veidt, an open-source Python machine-learning library for materials science
developed by the Materials Virtual Lab that is available on the Python
Package Index and Github (https://github.com/materialsvirtuallab/veidt).
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