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AtomSets as a hierarchical transfer learning framework for
small and large materials datasets
Chi Chen 1 and Shyue Ping Ong 1✉

Predicting properties from a material’s composition or structure is of great interest for materials design. Deep learning has recently
garnered considerable interest in materials predictive tasks with low model errors when dealing with large materials data. However,
deep learning models suffer in the small data regime that is common in materials science. Here we develop the AtomSets
framework, which utilizes universal compositional and structural descriptors extracted from pre-trained graph network deep
learning models with standard multi-layer perceptrons to achieve consistently high model accuracy for both small compositional
data (<400) and large structural data (>130,000). The AtomSets models show lower errors than the graph network models at small
data limits and other non-deep-learning models at large data limits. They also transfer better in a simulated materials discovery
process where the targeted materials have property values out of the training data limits. The models require minimal domain
knowledge inputs and are free from feature engineering. The presented AtomSets model framework can potentially accelerate
machine learning-assisted materials design and discovery with less data restriction.
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INTRODUCTION
Machine learning (ML) has garnered substantial interest as an
effective method for developing surrogate models for materials
property predictions in recent years.1,2 However, a critical
bottleneck is that materials datasets are often small and
inhomogeneous, making it challenging to train reliable models.
While large density functional theory (DFT) databases such as
the Materials Project,3 Open Quantum Materials Database,4 and
AFLOWLIB5 have ~O(106) relaxed structures and computed
energies, data on other computed properties such as band
gaps, elastic constants, dielectric constants, etc. tend to be
several times or even orders of magnitude fewer.2 In general,
deep learning models based on neural networks tend to require
much more data to train, resulting in lower performance in
small datasets relative to non-deep learning models. For
example, Dunn et al.6 have found that while graph deep
learning models such as the MatErials Graph Networks
(MEGNet)7 and Crystal Graph Convolutional Neural Network
(CGCNN)8 can achieve state-of-the-art performance for datasets
with > O(104) data points, ensembles of non-deep-learning
models (using AutoMatminer) outperform these deep learning
models when the data set size is < O(104), and especially when
the data set is < O(103).
Several approaches have been explored to address the data

bottleneck. The most popular approach is transfer learning (TL),
wherein the weights from models trained on a property with a
large data size are transferred to a model on a smaller data size.
Most TL studies were performed on the same property.9–11 For
example, Hutchinson et al.9 developed three TL approaches
that reduced the model errors in predicting experimental band
gaps by including DFT band gaps. Similarly, Jha et al.10 trained
models on the formation energies in the large OQMD database
and demonstrated that transferring the model weights from
OQMD can improve the models on the small DFT-computed
and even experimental formation energy data. More interest-
ingly, Frey et al.11 used pre-trained bulk MEGNet models on

formation energy, band gap, and Fermi energy and then
transferred such models to learn corresponding properties of
2D materials. TL has also been demonstrated between different
properties in some cases. For example, the present authors7

found that transferring the weights from large data-size
formation energy MEGNet models to smaller-data-size band
gap and elastic moduli models improved convergence rate and
accuracy. Another approach uses multi-fidelity models, where
datasets of multiple fidelities (e.g., band gaps computed with
different functionals or measured experimentally) are used to
improve prediction performance on the more valuable, high
fidelity properties. For example, two-fidelity co-kriging methods
have demonstrated successes in improving the predictions of
the Heyd–Scuseria–Ernzerhof (HSE)12 band gaps of perovs-
kites13, defect energies in hafnia14 and DFT bulk moduli.15 In a
recently published work, the present authors also developed
multi-fidelity MEGNet models that utilize band gap data from
four DFT functionals (Perdew-Burke-Ernzerhof16 or PBE,
Gritsenko–Leeuwen–Lenthe–Baerends with solid correction17,18

or GLLB-SC, strongly constrained and appropriately normed19

or SCAN and HSE12) and experimental measurements to
significant improve the prediction of experimental band gaps.20

In this work, we demonstrate that a pre-trained MEGNet
formation energy model can be used as encoders to generate
universal compositional and structural features for materials.
These features can then be used in standard multi-layer
perceptron (MLP) models to predict diverse properties with
different data sizes accurately. This AtomSets framework unifies
compositional and structural features under one umbrella. Using
13 MatBench datasets,6 we show that AtomSets models can
achieve excellent performance even when the inputs are
compositional and the data size is small (~300), while retaining
MEGNet’s state-of-the-art performance on properties with large
data sizes. Furthermore, the model construction requires minimal
domain knowledge and no feature engineering.
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RESULTS
Materials graph networks and the AtomSets framework
The MEGNet formalism has been described extensively in previous
works7,20 and interested readers are referred to those publications
for details. Briefly, the MEGNet framework featurizes a material
into a graph G= (V, E, u), where vi∈ V are the atom or node
features, ek∈ E are the edges or bonds, and u are state features.
The features matrices/vectors are V ¼ ½v1; ¼ ; vNa � 2 RNa ´Nf ,
E ¼ ½e1; ¼ ; eNb � 2 RNb ´Nbf and u 2 RNu , where Na, Nb, Nf, Nbf

and Nu are the number of atoms, bonds, atom features, bond
features, state features, respectively. For compositional models, Na

is the number of atoms in the formula. For simplicity, the atom
and bond features are represented as matrices. However, shuffling
the first dimension does not change the results of the models.
Hence, the atoms and bonds are essentially sets. A graph
convolution (GC) operation uses the connectivity of bonds to
transform input graph features (V, E, u) to output graph features
ðV0; E0;u0Þ, as shown in Fig. 1a.
In the initial structural graph (S), the atom attributes are simply

the atomic number of the element embedded into a vector space

via an atom embedding (AE) layer (AE : Z ! RN0
f ) to obtain

V0 2 RNa ´N0
f , as shown in Fig. 1b, where N0

f is the embedded
atom dimension. The bonds are constructed by considering atom
pairs within a certain cutoff radius Rc. With each GC layer,
information is exchanged between atoms, bonds, and state. As
more GC layers are stacked (e.g., GC2 and GC3 in Fig. 1b),
information on each atom can be propagated to further distances.
In this work, a MEGNet model with three GC layers was first

trained on the formation energies of more than 130,000 Materials
Project crystals as of Jun 1, 2019, henceforth referred to as the
parent model. The training procedures and hyperparameter
settings of the MEGNet models are similar to the previous work.7

The AtomSets framework uses atom-wise features as inputs, as
shown in Fig. 1c. In principle, any atom-wise features can be used.

If the features are element-based features, e.g., the V0 elemental
features, then the AtomSets models become purely composi-
tional. Likewise, site-wise features that encode local geometric
information, such as V1, V2, and V3, can be provided as the
AtomSets inputs, and the models can predict structure-relevant
properties. In the non-TL AtomSets models, the compositional
feature inputs to the models are the atomic numbers, where they
undergo a learnable embedding process. In our TL framework, the

output atom Vi ¼ ½vðiÞ1 ; ¼ ; vðiÞNa
�ði ¼ 0; 1; 2; 3Þ features after each

embedding or GC layer are extracted from the parent model and
transferred as inputs of AtomSets models for other properties, i.e.,
the MEGNet formation energy model functions purely as an
encoder of a material into compositional or structural features.
Bond features are not considered in TL since the number of bonds
depends on the graph construction settings and parameters, such
as cutoff radius. As shown in Fig. 1c, an AtomSets model takes the
atom-wise features Vi matrix of shape Na × Nf as inputs, and each
row of the feature matrix is passed to an MLP model. These
features can either be compositional, e.g., elemental properties, or
structural, e.g., local environment descriptor. Afterward, the output
feature matrix is read out to a vector, compressing the atom
number dimension.
The readout vector can be used to predict properties with the

help of MLP or other models, as shown in Fig. 1c. The feature
matrix can either be taken as the pre-trained model generated
feature matrices Vi (i= 0, 1, 2, 3) or trained on the fly via a
trainable atom embedding layer prepended to the model. When
the site-wise/atom-wise features are computed from pre-trained
models, information gained from previous model training is
retained, and effectively the AtomSets models transfer-learn part
of the pre-trained models. A hierarchical TL scheme is achieved by
including different GC outputs. The AtomSets models can also be
used without transfer learning by training the elemental embed-
ding and hence atom-wise features from the data.

Fig. 1 Graph networks and AtomSets schematics. a The graph convolution (GC) takes an input graph with the labeled atom (V), bond (E), and
state (u) attributes and outputs a new computed graph with updated attributes. b The graph network model architecture. The input to the model is
the structure graph (S) with atomic number as the atom attributes. Then the graph is passed to an atom embedding (AE) layer, followed by three GC
layers. After the GC, the graph is read out to a structure-wise vector f, and f is further passed to multi-layer perceptron (MLP) models. Within the
model, each layer output is captured for later use. c The AtomSets model takes a site-wise/element-wise feature matrix and passes to MLP layers. After
the MLP, a readout function is applied to derive a structure-wise/formula-wise vector, followed by final MLP layers.
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The AtomSets framework is flexible in the choice of input
features. For example, if the symmetry functions are provided as
inputs, then the AtomSets model becomes the high-dimensional
neural network potential.21 The AtomSets framework also shares
similarity with the Deepsets22 model where the summation of
feature vectors are used to get the readout vectors. Since only
simple MLP are underlying the AtomSets framework, the model
training can be extremely fast. Models investigated in the
current work are provided in Table 1. More details about
the graph convolutions and readout functions are provided in
the Methods section.

Model accuracies
The models were trained on the 13 materials datasets in the
MatBench repository6. A summary is provided in Supplementary
Table 1, where the data sizes range from 312 to 132,752, with both
compositional and structural data. The tasks include regression
and classification. Detailed summaries are provided in the work by
Dunn et al.6 Before the model metrics evaluations, we performed a
rough initial search of model hyperparameter combinations as
listed in Supplementary Table 2. The MAE of regression and the
AUC of classification for various tasks are shown in Table 2. In
addition, hyperparameter optimization was carried out on the
AtomSets-V0 and V1 models (see Supplementary Table 3), but did
not seem to have a significant effect on model performance. Here,
we will focus our discussion on the models without further
hyperparameter optimization for individual models. To frame our
analysis, we will first recapitulate that a key finding of Dunn et al.6

is that MEGNet models tend to outperform other models when
the data size is large (>10,000 data points) but underperform for
small data sizes. This can be seen in the last two columns of
Table 2, where AutoMatminer models achieve lower MAEs for the
small yield strength, exfoliation energies, and refractive index
datasets compared to MEGNet.
The AtomSets models do not suffer from the same data size

tradeoff observed in the MEGNet models. With a few notable
exceptions, the transfer-learned AtomSets models usually
achieve close to the best performance (lowest MAE or highest
AUC, with the error bar) among all models studied. For the small
yield strength and refractive index datasets, AtomSets models
perform similarly to AutoMatminer, while for the larger forma-
tion energies (Perovskite and MP Ef) and MP band gap (Eg)
datasets, AtomSets models perform similarly to MEGNet. The
only dataset where the AtomSets and MEGNet models substan-
tially underperform relative to AutoMatminer is the JDFT-2D
exfoliation energy data, where the data size is very small. We
have also investigated changing the random seeds for the data
splitting, and the results are presented in Supplementary Table 4.
Overall the results are consistent for AtomSets-V0 and AtomSets-
V1 but show discrepancies at small datasets such as the JDFT-2D

exfoliation energy and the refractive indices. As expected, the
results suggest higher model variances when fitted on smaller
datasets.
A somewhat surprising observation is that several target

properties show minimal dependency on structural information.
For example, the average MAEs of the compositional AtomSets-
V0 models and structural AtomSets-V1 models for the JDFT-2D
exfoliation energy, the MP phonon DOS peak, and the refractive
index datasets are within the standard deviation. The structural
AtomSets-V1models for the MP elasticity data (log KVRH and
logGVRH) only exhibit minor improvements in average MAEs over
the compositional AtomSets-V0 models. To investigate the
implications of this observation, we analyzed the polymorphs
for each composition in the elasticity data set, see Supplemen-
tary Fig. 1. Out of the 10,987 elasticity data, 81% of them do not
have polymorphs. For those materials, structural models likely
perform similarly to the compositional models. For compositions
with more than one polymorph (816 out of 9723 unique
compositions), we calculated the range of the target values for
polymorphs, as shown in Supplementary Figs. 1b, c. The majority
of the polymorphs for the same composition have similar bulk
and shear moduli, and the average ranges (max-min for the same
compositions) for log KVRH and logGVRH are 0.134 and 0.158,
respectively. If we include compositions with no polymorphs, i.e.,
range equals zero, the average ranges for log KVRH and logGVRH
are 0.011 and 0.013, respectively. Such small ranges for each
composition suggest that composition explains most of the
variation in bulk moduli, which is why the accuracy differences
between AtomSets-V0 and AtomSets-V1 are minimal. This
observation also gives a glance at why compositional models
have been reasonably successful. It should be noted that
there are well-known polymorphs with vastly different mechan-
ical properties, e.g., diamond and graphite carbon, and the
AtomSets-V1 provide far better predictions. For example,
the AtomSets-V1 model predicts the shear moduli of graphite
(96 GPa) and diamond (520 GPa) to be 96 GPa and 490 GPa,
respectively, while the AtomSets-V0 model predicts them to be
177 GPa. In contrast, the perovskites and MP formation energy
datasets require structural models to achieve accurate results.
This observation is consistent with a recent study by Bartel
et al.23 For further verification of the polymorph effects, we have
screened out polymorphs with diverse properties from the MP Ef,
MP log ðKVRHÞ and MP log ðGVRHÞ datasets and evaluated the
model errors on those polymorph datasets. The AtomSets-V1
structural models consistently outperform the compositional
AtomSets-V0 models by a substantial margin in all polymorph
datasets, as shown in Supplementary Table 5.
Comparing AtomSets models with various V’s, the results show

that the features extracted from earlier stage GC layers, e.g.,
V0 and V1, are more generalizable and have higher accuracy

Table 1. Models investigated in this work, categorized by the models types, i.e., compositional (C) or structural (S), and whether they utilize transfer
learning (TL).

Model name Type TL Description

AtomSets C No Compositional models directly trained from data

AtomSets-V0 C Yes Compositional models transferring learned V0 from the parent formation energy model

AtomSets-Vi (i= 1, 2, 3) S Yes Structural models transferring learned V1, V2 or V3 features from the parent formation energy model

MLP-V0-stats C Yes Compositional MLP models using statistics calculated on V0 from the parent formation energy
model as inputs

MLP-ui (i= 1, 2, 3), MLP-f and MLP-vr S Yes MLP models using learned ui, f or vr from the parent formation energy model.

MEGNet S No Graph network models trained directly using each data set without transfer learning

In our definition, S-type models contain compositional information as a superset. It should be noted that the MLP-ui, MLP-f and MLP-vr are classified as S-type
models because ui, f or vr implicitly incorporate structural information due to information passing in the graph convolution layers.
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in all models compared to those produced by later GC layers.
The structure-wise state vectors, ui(i= 1, 2, 3), and the readout
atom feature vector vr, are relatively poor features, as shown by
the significant errors in all models in Supplementary Table 6.
However, the final structure-wise readout vector f, along with
MLP models, offers excellent accuracy in MP metallicity and
formation energy tasks. We further isolated the effects of
structures and studied models with only structural inputs (no
element information). We replaced all elements in the benchmark
data with H and then generated features based on the replaced
structures. As expected, the model errors increase substantially
for all datasets, as shown in Supplementary Table 7. Surprisingly,
the AtomSets classification models using structure-only informa-
tion on the MP metallicity dataset show an AUC of 0.92. Common
neighbor analysis24 of these structures reveals that the non-
metals tend to have sites that are of low symmetries, which is not
the case for metals, as shown in Supplementary Fig. 2. Hence, the
geometric information alone can already distinguish metals and
non-metals, explaining the high AUC of AtomSets models with
only geometry inputs.
Overall, the combined AtomSets-V0 and AtomSets-V1 have

either similar or better accuracy than AutoMatminer models. The
combination also achieves close accuracy in the large structural
data limit compared to the MEGNet models but at a much smaller
computational cost during model training.

Model convergence
A convergence study of the best models - two compositional
models, i.e., AtomSets, AtomSets-V0, and two structural models,
i.e., AtomSets-V1 and MLP-f - was performed relative to data size.
Different data sizes in terms of the fractions of maximum available
data are applied. Comparing the two compositional models,
the AtomSets-V0 model achieves relatively higher performance
throughout all the tasks and generally converges faster than the
non-TL counterpart, i.e., the AtomSets model, as shown in Fig. 2.
For the structural datasets in Fig. 2c, d, consistent with previous
benchmark results, the structural AtomSets-V1 and MLP-f models
are generally more accurate than the compositional models. The
rapid convergence of the MLP-f models in the MP formation
energy dataset is expected since the structural features f were
generated by the formation energy MEGNet models in the first
place. Model convergences on the rest of the datasets are
provided in Supplementary Fig. 3.
The model performance is also probed at tiny datasets. We used

several MP datasets in this study to obtain consistent results and
then down-sampled the datasets at 100, 200, 400, 600, 1000, and
2000 data points. For comparison, we also include the non-TL
MEGNet structural models, as shown in Fig. 3. Similar to the
previous convergence study at relatively large data sizes, the TL
compositional models AtomSets-V0 outperform the non-TL
compositional AtomSets models at all data sizes. For structural
models, the TL AtomSets-V1 models achieve consistent accuracy at

Table 2. Performance of AtomSets models relative to state-of-the-art models using the same five-fold random splitting methods and the random
seed of 18012019.

Target, data size AtomSets AtomSets-V0 AtomSets-V1 AtomSets-V2 AtomSets-V3 MLP-f MEGNet6 AutoMatminer6

Regression tasks

Yield strength (MPa), 312a 104 ± 15 102 ± 11 – – – – – 95

Eexfo (meV atom−1), 636b 52 ± 11 52 ± 12 51 ± 8 50 ± 10 57 ± 10 48 ± 8 56 39

PhonDOS peak (cm−1), 1265c 63 ± 12 53 ± 15 51 ± 6 84 ± 13 78 ± 17 113 ± 8 37 51

Expt. Eg (eV), 4604d 0.43 ± 0.03 0.41 ± 0.03 – – – – – 0.42

n, 4764e 0.36 ± 0.07 0.35 ± 0.08 0.32 ± 0.08 0.36 ± 0.06 0.35 ± 0.08 0.38 ± 0.08 0.48 0.30

log(KVRH) (GPa), 10987
f 0.08 ± 0.00 0.08 ± 0.00 0.07 ± 0.00 0.09 ± 0.00 0.09 ± 0.00 0.11 ± 0.00 0.07 0.07

log(GVRH) (GPa), 10987
g 0.11 ± 0.00 0.11 ± 0.00 0.09 ± 0.00 0.10 ± 0.00 0.10 ± 0.00 0.12 ± 0.00 0.09 0.09

Perovskite Ef (meV atom−1), 18928h 82 ± 1 82 ± 2 12 ± 0 25 ± 1 24 ± 1 30 ± 0 8 39

MP Eg (eV), 106113i 0.26 ± 0.01 0.26 ± 0.00 0.25 ± 0.00 0.31 ± 0.00 0.31 ± 0.01 0.34 ± 0.01 0.24 0.28

MP Ef (meV atom−1), 132752j 94 ± 1 95 ± 1 49 ± 1 73 ± 1 61 ± 1 29 ± 0n 33 173

Classification tasks

Expt. metallicity, 4921k 0.94 ± 0.01 0.95 ± 0.01 – – – – – 0.92

Glass forming ability, 5680l 0.91 ± 0.02 0.92 ± 0.01 – – – – – 0.86

MP metallicity, 106113m 0.95 ± 0.00 0.95 ± 0.00 0.96 ± 0.00 0.95 ± 0.00 0.96 ± 0.00 0.96 ± 0.00 0.98 0.91

The average and standard deviations of the MAE and AUC are reported for regression and classification tasks, respectively. The properties are sorted by
dataset size. Some structural models (e.g., AtomSets-V1/V2/V3 for experimental band gaps) cannot be constructed as the dataset does not contain structural
information. The best performing model(s) within the standard deviation are bolded for each target.
aSteel yield strength data from Citrine Informatics.37
bExfoliation energy of crystals from JARVIS DFT 2D dataset.38
cPhonon DOS peak frequency from Materials Project.39
dExperimental composition-band gap dataset from Zhuo et al.40
eRefractive index from Materials Project.41
fLog of computed bulk moduli from Materials Project.42
gLog of computed shear moduli from Materials Project.42
hComputed perovskite formation energy from Castelli et al.43
iComputed PBE band gap data from Materials Project3,44.
jComputed PBE formation energy data from Materials Project3,44.
kExperimental metallicity (binary) from Zhuo et al.40
lGlass forming ability (binary) from Landolt–Bornstein Handbook45.
mComputed PBE metallicity (binary) from Materials Project.3,44
nRandom splitting gives 15meV atom−1. The 29meV atom−1 result is from splitting the data using the pre-trained model splitting.
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small data limits for all four tasks and consistently outperform the
non-TL MEGNet models.
Interestingly, the MLP-f models specialize in MP metallicity data

and MP formation energy data, same as previous benchmark
results shown in Table 2. In particular, the MLP-f models converge
rapidly for the MP metallicity task, with AUC exceeding 85% with
only 200 data points and 90% with only 1000 data points. The
MLP-f models also reach ~0.2 eV atom−1 errors on the MP
formation energy data when the data size is 600. In both cases, the
MLP-f models outperform MEGNet models by a considerable
margin. However, in terms of generalizability, the AtomSets-V1
models seem to be a better fit for all generic tasks.
At a data size of 600 (533 train data points), the formation

energy and the band gap models errors of AtomSets-V1 are 0.2 eV
atom−1 and 0.702 eV, respectively, much lower than the errors
achieved by the full MEGNet models with 0.367 eV atom−1 and
0.78 eV. The AtomSets-V1 errors at such small data regimes are on
par with the 0.210 eV atom−1 and 0.71 eV errors (504 train data
points) reported by the MODNet models25 that specialize in small
materials data fitting. Interestingly, the compositional model
AtomSets-V0 also achieved lower errors than full MEGNet, with
formation energy model errors of 0.269 eV atom−1 and band gap
model errors of 0.72 eV.

Model extrapolability
In a typical materials design problem, the target is not finding a
material with similar performance as existing materials, but rather
materials with extraordinary properties outside the current
materials pool. Such extrapolation presents a major challenge
for most ML models. Previous works have generally used leave-
one-cluster-out cross-validation (LOCO CV)26 or k-fold forward
cross-validation27 to evaluate the models’ extrapolation ability in
data regions outside the training data. Here we adopted the
concept of forward cross-validation by splitting the data according

to their target value ranges and applied the method to elasticity
data (MP log(KVRH) and MP log(GVRH)) to simulate the process of
finding super-incompressible (high K) and superhard (roughly
high G) materials. The materials with the top 10% highest target
values were held out as the test dataset (high-test, extrapolation).
Then the remaining data was split into the train, validation, and
test (low-test, interpolation) datasets, making two test data
regimes in total. We selected AtomSets, AtomSets-V0, AtomSets-
V1, and the MEGNet models for the comparison. For the bulk
modulus K, the low-test errors for the compositional models
AtomSets and AtomSets-V0 are identical. However, when the test
target value lies outside of the training data range, the errors
increase rapidly above the low-test errors. Nevertheless, the TL
model AtomSets-V0 generalizes better in the extrapolation high-
test regime compared to the non-TL AtomSets model, as shown
by the lower extrapolation errors in Fig. 4b compared to Fig. 4a.
For structural models, the low-test errors are again almost the
same. Yet, the TL AtomSets-V1 models have lower errors than
the MEGNet counterparts, see Fig. 4c, d. Similar conclusions can be
reached using the shear moduli dataset, as shown in Supplemen-
tary Fig. 4. If the prediction regime is further away from the
training data regime, the accuracy improvements using the
transfer-learned AtomSets models are even bigger, as shown in
Supplementary Figs. 5 and 6, where only the bottom 50% are used
as training data. These results demonstrate that TL approaches
can significantly enhance the models’ accuracy in extrapolation
tasks critical in new materials discovery.

Effect of changing the parent models
The above results utilize the MEGNet formation energy model as
the parent model as it is the dataset for which the largest amount
of data is available. To investigate the effects of the pre-trained
parent models on the quality of transfer learning features, we have
developed AtomSets models with features generated from four

Fig. 2 Model convergence for AtomSets, AtomSets-V0, AtomSets-V1 and MLP-f. a and b show the small compositional datasets, and c and
d are for the large structural datasets. a and c show the area under the curve (AUC) for classification tasks, and b and d show the mean-
absolute error (MAE) for regression tasks. The x-axis is plotted on a log scale to provide improved resolution at small data sizes. The shaded
areas are the standard deviation across five random data fitting. Additional model results are shown in Supplementary Fig. 3.
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additional MEGNet models fitted using 1,000, 10,000, and 60,000
formation energy data points (MEGNet-Ef-n, where n refers to the
number of data points) and 12,179 log ðKVRHÞ data points (MEGNet-
log K) from the Materials Project. The results are presented in
Supplementary Tables 8–11. The AtomSets-V0 compositional
models using different parent models generally have similar
accuracies and are close to the AtomSets compositional models
without transfer learning, similar to the conclusions from Table 2.
In contrast, the performance of structural models AtomSets-Vi(i=

1, 2, 3) show a stronger dependence on the parent models. For
example, the structural AtomSets-V1 models utilizing for MEGNet-Ef-
1000 and MEGNet-Ef-10,000 encoders have lower accuracies than
those using the MEGNet-Ef-60,000 and MEGNet-Ef-133,420 enco-
ders, as shown in Fig. 5. This is especially the case in small datasets
such as exfoliation energy (Eexfo) and phonon datasets. We also
observed consistently better accuracy in the large MP formation
energy AtomSets models using Ef parent models with larger data
sizes. By changing the parent data from Ef to the log ðKVRHÞ, we
noticed a substantial accuracy drop for the AtomSets structural
models. We believe that this drop is caused by the relatively lower
data quality in the log ðKVRHÞ data compared to the formation
energy data, and this difference in the data quality translates to the
TL feature quality. The elasticity data is computed via the fitting of
the stress-strain relationship where the stress calculations in DFT
require much higher K-point density and hence challenging to
achieve a consistent level of accuracy in a high-throughput fashion.
The inaccuracy in stress calculations may amplify errors in the final
elasticity results, introducing more significant intrinsic errors in the
parent models.

DISCUSSION
The hierarchical MEGNet features provide a cascade of descrip-
tors that capture both short-ranged interactions at early GC
(e.g., V0, V1) and long-ranged interactions at later GC (e.g., V2, V3).

The first GC features are better TL features across various tasks,
while the latter GC-generated features generally exhibit worse
performance. We can explain this part by drawing an analogy to
convolutional neural networks (CNN) in facial recognition, where
the early feature maps capture generic features such as lines and
shapes and the later feature maps form human faces.28 It is not
surprising that if such CNN is transferred to other domains, for
example, recognizing general objects beyond faces, the early
feature maps may work while the later ones will not. Hence, the
AtomSets-V0 models are best suited for compositional datasets,
while the AtomSets-V1 models are recommended for fitting
structure-based datasets.
One surprising result from our studies is the relatively good

performance of the compositional models (AtomSets-V0) on many
properties, e.g., the phonon dos and bulk and shear moduli. It
would be erroneous to conclude that these properties are not
structure-dependent. We believe the main reason for the
compositional models’ outperformance is that most compositions
either do not exhibit polymorphism or have many polymorphs
with somewhat similar properties, e.g., the well-known family of
SiC polymorphs. These results highlight the importance of
generating a diversity of data beyond existing known materials.
Existing databases such as the Materials Project typically prioritize
computations on known materials, e.g., ICSD crystals. While such a
strategy undoubtedly provides the most value to the community
for the study of existing materials, the discovery of new materials
with extraordinary properties require exploration beyond known
materials; additional training data on hypothetical materials is
critical for the development of ML models that can extrapolate
beyond known materials design spaces. The use of TL, as shown in
this work, is nevertheless critical for improving the extrapolability
of models.
While the AtomSets framework has shown good model

accuracies across the different datasets, the intent of AtomSets
was not to be the best performer for all cases. With the current

Fig. 3 Model convergence in the small data limits. The four datasets are the (a) log10 of the bulk moduli, (b) band gap, (c) binary metallicity,
and (d) formation energy structural datasets from the Materials Project. The shaded areas are the standard deviation across five random
data fitting.
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work, we wish to point out that pre-trained graph models can
work beyond their original application domains and, for example,
as efficient feature generators in other tasks. Even with simple
MLP child models, such as the ones in AtomSets models, the final
models can already achieve excellent accuracy. For some cases, in
particular, in the small data regime, the AutoMatminer model
ensembles are on par or slightly better than the AtomSets
models. This is somewhat expected given the vast choice of
engineered features and the complexity of model ensembles

used in the AutoMatminer algorithm. In contrast, the AtomSets
rely on a fixed MLP model architecture and deterministic features
obtained directly by passing the crystal structure to the pre-
trained graph models.
For the comparison with the MEGNet framework, we note that

the most time-consuming step in training a graph network
model is performing the graph convolutions. Once the graph
models are trained, we show that the models can be used as
efficient feature generators. Combining with the pre-trained
MEGNet model, the AtomSets framework with simple MLPs can
already achieve the same accuracy as the expensive MEGNet
models and additional applicability in small and compositional
datasets. Since there is no parameter update to the MEGNet
model, the training speeds are several orders of magnitude
faster. For example, it takes about 10 s per epoch and ~360 to
~730 epochs to train the AtomSets-V1 model on the most
extensive MP formation energy data (132,752) using one GTX
1080Ti GPU while training a MEGNet model can take >100 s per
epoch and 1582 epochs. The training speed for AtomSets models
is also at least one order of magnitude faster than AutoMatminer,
as shown in Supplementary Fig. 7.
Recently, several frameworks for ML in materials have been

proposed to improve the model prediction accuracies on general
materials data. For example, the improved CGCNN model29 uses
Voronoi-tessellation to construct the graph representation and
includes explicit three-body interaction, and learnable bond
features to the original CGCNN models. Despite its higher accuracy
in some structural datasets, it does not solve the small data
limitation as seen in MEGNet and CGCNN models. Other frame-
works, such as ElemNet30, IRNet31, Roost32 and CrabNet33 are
based purely on compositional information and hence, cannot

Fig. 4 Absolute differences in predicted and DFT log ðKVRHÞ, i.e., jΔlog ðKVRHÞj against the DFT value range for the test data. a–d show the
AtomSets, AtomSets-V0, AtomSets-V1, and MEGNet model results respectively. The training and validation data are randomly sampled from
the 0–90% (vertical dash line) target quantile range. Half of test data comes from the 90–100% quantile (extrapolation) and the other half is
from the same target range as the train-validation data (interpolation).

Fig. 5 The effects of changing the parent MEGNet models on the
performances of the AtomSets-V1 models. The y axis is the mean-
absolute deviation (MAD) divided by the MAE. A higher value
corresponds to a better model.
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distinguish polymorphs of materials. While such composition-
based models have applications in problems with constrained
structural spaces and/or structure-insensitive properties, they do
not represent a path to general property predictions across the
entire universe of crystal structures and compositions. While a key
bottleneck in structure-based models is the requirement for an
input structure, these can be mitigated to some extent by
employing Bayesian optimization or other similar approaches in
combination with a sufficiently accurate energy model, such as
the MEGNet formation energy model, to obtain estimated
equilibrium crystals.34

This work introduces a straightforward deep learning model
framework, the AtomSets, as an effective way to learn materials
properties at all data sizes and for both compositional and
structural data. By combining with TL, the structure-embedded
compositional and structural information can be readily incorpo-
rated into the model. The simple model architecture makes it
possible to train the models with much smaller datasets and lower
computational resources than graph models. We show that the
AtomSets models can consistently achieve low errors for small
data tasks, e.g., steel strength datasets, to extensive data tasks,
e.g., MP computational data. The model accuracy further improves
with TL. We also show better model convergence for the AtomSets
models. The AtomSets framework introduces a facile deep
learning framework and helps accelerate the materials discovery
process by combining accurate compositional and structural
materials models.

METHODS
Graph convolution
During graph convolution, the atom, bond and state features are updated
as follows:

eðiÞk ¼ ϕe eði�1Þ
k ; vði�1Þ

sk ; vði�1Þ
rk ;uði�1Þ

� �
(1)

vðiÞj ¼ ϕv vði�1Þ
j ; vði�1Þ

k2NðjÞ; e
ðiÞ
l;rl¼j ;u

ði�1Þ
� �

(2)

uðiÞ ¼ ϕu
1
Nb

X
k

eðiÞk ;
1
Na

X
j

vðiÞj ;uði�1Þ
 !

(3)

where i is an index indicating the layer of the GC, eðiÞk and vðiÞj are bond
attributes of bond k and atom attributes of atom j at layer i respectively,
sk and rk are the sending and receiving indices of atoms connecting
bond k, ϕs are the update functions approximated using multi-layer
perceptrons (MLPs), NðjÞ indicates the neighbor atom indices of atom j,
and eðiÞl;rl¼j are the bonds connected with atom j, i.e., with receiving atom
index rl as j.

Graph readout function
The readout function aims to reduce the feature matrices with different
numbers of atoms to structure-wise vectors subject to permutational
invariance. Simple functions to calculate the statistics along the atom
number dimension can be used as readout functions. In this work, we
tested two types of readout functions. The linear mean readout function
averages the feature vectors, as follows

x ¼
P

iwixiP
iwi

(4)

where xi is the feature row vector for atom i and wi is the corresponding
weights. The weights are atom fractions on one site, e.g., wFe= 0.01 and
wNi= 0.99 in Fe0.01Ni0.99. We also tested a weight-modified attention-based
set2set35 readout function. We start with memory vectors mi = xiW+ b,
and initialize q0

� ¼ 0, where W and b are learnable weights and biases
respectively. At step t, the updates are calculated using long short-term

memory (LSTM) and attention mechanisms as follows

qt ¼ LSTMðq�
t�1Þ (5)

ei;t ¼ mi � qt (6)

ai;t ¼ wi expðei;tÞP
jwj expðej;tÞ (7)

rt ¼
X
i

ai;tmi (8)

qt� ¼ qt � rt (9)

A total of three steps are used in the weighted-set2set readout function.
Compared to the simple linear mean readout function, the weighted
set2set function has trainable model weights and can describe more
flexible and complex relationships between the input and output. The
chosen readout functions balance the trade-off between computational
speed and model accuracy differently. The linear mean function is faster
but potentially less accurate, and the weighed-set2set function is slower
but potentially more accurate.

Data and model training
For each model training, we split the data into 80%-10%-10% train-validation-
test sets randomly, and the splitting was performed five times with random
seeds 0, 1, 2, 3, and 4. The validation set was used to stop the model fitting
when the validation metric, i.e., mean-absolute-error (MAE) in regression and
area under the curve (AUC) in classification, did not improve for more than
200 consecutive epochs. The model with the lowest validation error was
chosen as the best one. Each model was fitted five times using different
random splits, and the average and standard deviations of the metric on the
test set were reported. In Table 2, to make direct comparisons with existing
models, we took the same five-fold shuffle splitting/stratified splitting and the
random seed 18012019 from Dunn et al.6 In this case, each 80% train data is
further split into 90%-10% train-validation, and the validation set is used in the
same way as in other fittings.
A 5-fold random shuffle split is applied to the data set during the initial

hyperparameter screening process, and the parameter set with the lowest
average validation error was chosen. The matbench_expt_gap (composi-
tional) and matbench_phonons (structural) datasets were first used to
perform an initial screening for relatively good parameter sets (highlighted
in bold in Supplementary Table 2).

DATA AVAILABILITY
The MatBench datasets are available from the AutoMatminer6 github repository
(https://github.com/hackingmaterials/automatminer).

CODE AVAILABILITY
The AtomSets framework and MEGNet featurizations are implemented in the open
source materials machine learning (maml) package36 (https://github.com/
materialsvirtuallab/maml).
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