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Machine learning interatomic potentials (MLIPs) enable accurate simulations of materials at scales
beyond that accessible by ab initio methods and play an increasingly important role in the study and
design of materials. However, MLIPs are only as accurate and robust as the data on which they are
trained. Here, we present DImensionality-Reduced Encoded Clusters with sTratified (DIRECT)
sampling as an approach to select a robust training set of structures from a large and complex
configuration space. By applying DIRECT sampling on the Materials Project relaxation trajectories
dataset with over one million structures and 89 elements, we develop an improved materials 3-body
graph network (M3GNet) universal potential that extrapolates more reliably to unseen structures. We
further show that molecular dynamics (MD) simulations with the M3GNet universal potential can be
used instead of expensive ab initioMD to rapidly create a large configuration space for target systems.
We combined this scheme with DIRECT sampling to develop a reliable moment tensor potential for
titanium hydrides without the need for iterative augmentation of training structures. This work paves
the way for robust high-throughput development of MLIPs across any compositional complexity.

Machine learning interatomic potentials (MLIPs) have become an indis-
pensable staple in the computational materials toolkit. MLIPs parameterize
the potential energy surface (PES) of an atomic system as a function of local
environment descriptors using ML techniques1–10. While MLIPs generally
exhibit much better accuracies in energies and forces compared to tradi-
tional IPs11,12, their key advantage is that they can be systematicallyfitted and
improved in a semiautomated fashion for diverse structural and chemical
spaces. By enabling accurate simulations over length and time scales that are
much larger than those accessible by ab initio methods, MLIPs have dee-
pened the understanding of a wide range of physicochemical processes.
These include lithium diffusion in lithium superionic conductors and their
interfaces13–17, dislocation behavior and ordering in multiple principal ele-
ment alloys18,19, liquid-amorphous and amorphous-amorphous transitions
in silicon20, and reaction mechanisms of molecule-molecule and molecule-
surface scattering21,22, to name a few12.

An exciting recent innovation in MLIPs is graph deep learning
architectures6–8,10. Graph deep learning models encode the elemental char-
acter of each atom using features with a fixed dimensionality, avoiding the
combinatorial explosion inmodel complexity associatedwith thenumber of

elements in typical MLIPs. Of particular relevance to this work is the
Materials 3-body Graph Network (M3GNet) architecture, which combines
many-body features of traditional IPs with those of flexible material graph
representations. By training on the massive database of structural relaxa-
tions in the Materials Project, Chen et al.6 have developed a M3GNet uni-
versal potential (M3GNet-UP) for 89 elements of the periodic table and
demonstrated its application in predicting structural and dynamical prop-
erties for diverse materials.

The critical challenge in developing a robust MLIP is generating a
training dataset that can provide a good coverage of the structural/chemical
space of the materials of interest (henceforth, referred to as the ‘config-
uration space’). Typically, the configuration space is generated through
domain expertise, comprising ground-state structures, relaxation trajectory
snapshots, strained structures, ab initio molecular dynamics (AIMD)
structures, defect structures, etc. Ab initio calculations such as those based
on density functional theory (DFT) are then performed on structures
sampled from the configuration space to obtain accurate energies and forces
as training data for MLIPs.
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To ensure sufficient coverage of the configuration space, state-of-the-
art training protocols often incorporate some form of active learning
(AL)23–28. In this way, an MLIP is used to simulate the materials of interest,
and generated structures that require extrapolation are added to refit the
MLIP in an iterative fashion. The key advancement in AL is the efficient
evaluation of the uncertainty of the MLIP on new structures without
referring to the DFT PES, which greatly expands the search space and
minimizes the cost of training structure augmentation. While AL has been
undeniably effective in the constructionof robustMLIPs, it canbe inefficient
for highly complex configuration spaces. For instance, a recent work by the
authors to fit a moment tensor potential for the 7-element (Li7/18Sr17/36)
(Ta1/3Nb1/3Zr2/9Sn1/9)O3 complex concentrated perovskite required over
100AL iterations16. To sample rare configurationsmore efficiently, the latest
AL strategies, e.g., hyperactive learning29 anduncertainty drivendynamics30,
bias the MD simulations to ensure that structures in low- and high-energy
regions are both sufficiently sampled, reducing the number of AL iterations.

An ideal strategy should enable efficient generationand samplingof the
configuration space prior to any DFT computations. One proposed
approach is to bias MD simulations to sample ordered and disordered
structures as an entropymaximization (EM) strategy31,32 to sample a diverse
feature space. For example, Montes de Oca Zapiain et al.32 showed that an
MLIP for tungsten trained with an EM set has much more consistent
accuracies in energies for structures present in both the EM set and the
domain expertise (DE) training set, while theMLIP trained with the DE set
performs significantly worse for the EM set than for the DE set. Another
recently proposed high-throughput scheme generated four training sets for
Mg, Si, W, and Al by applying normally distributed random atom dis-
placements together with isotropic and anisotropic lattice scaling to the
respective non-diagonal supercells33,34. The fitted MLIPs can accurately
reproduce the force constant matrix of those crystalline systems.

In this work, we present a DImensionality-Reduced Encoded Clusters
with sTratified (DIRECT) sampling strategy to generate robust training data
for MLIPs for any chemical systems. We will first demonstrate the effec-
tiveness of DIRECT sampling of 1.3 million structures in the Materials
Project structural relaxation dataset6,35,36 to fit an improved M3GNet uni-
versal potential (UP). Next, we will demonstrate how the M3GNet UP can
be used to efficiently generate configuration spaces for DIRECT sampling
using the Ti-H model system, which is known to be highly challenging for
reliable MD simulations. This work paves the way towards robust high-
throughput development of MLIPs across any compositional complexity.

Results
DIRECT workflow
Figure 1 provides a workflow of the proposed DImensionality-Reduced
Encoded Clusters with sTratified (DIRECT) sampling approach, which
comprises five main steps:

Step 1: Configuration space generation. A comprehensive configura-
tion space ofN structures for the system of interest is generated. This can be
performed using commonly employed approaches, such as sampling of
trajectories from AIMD simulations and generating structures by applying
randomatomdisplacements and lattice strains, or alternatively, by sampling
MD trajectories with universalMLIPs, such asM3GNet as demonstrated in
later sections.

Step 2: Featurization/encoding. Next, the configuration space is fea-
turized into fixed length vectors for each structure. While there are many
well-established descriptors used in MLIPs, most describe only the local
atomic environments and do not efficiently handle arbitrary chemical
complexity.Taking inspiration fromtheAtomSets framework37,wepropose
to use the concatenated output of the final graph convolutional layer (GCL)
from pre-trained graph deep learning formation energy models that cover
diverse chemistries. The rationale for this choice is that thefinal output layer
of such models already encodes a fixed-length structure/chemistry repre-
sentation for predicting energy. Furthermore, the formation energy is one of
the most readily available large datasets in materials databases such as the
Materials Project. In this work, we will use the 128-element vector outputs

from the M3GNet model trained on the formation energies of materials in
Materials Project6, though similar results are obtained with the 96-element
vector outputs from the MEGNet formation energy model37,38.

Step 3: Dimensionality reduction. A further dimensionality reduction
step is carried out. Here, we apply principal component analysis (PCA) on
the normalized fixed-length features from the encoding step. Following
Kaiser’s rule, the first m PCs with eigenvalues over 1, i.e., explaining more
variance than any single variable, are kept to represent the feature space. For
ease of visualization, we have plotted only the first two PCs in Fig. 1, even
though more than two PCs are usually used in this work.

Step 4: Clustering. Next, clustering is carried out to group structures
with shared characteristics. In thiswork, the balanced iterative reducing and
clustering using hierarchies (BIRCH) algorithm39, a highly efficient
centroid-based clustering method, is used to divide all features into clusters
based on their locations in them-D feature space. PCs are weighted by their
respective explained variance before clustering. The choice of the number of
clusters (1 ≤ n ≤N) can be determined based on the desired accuracy and
computational budget. Figure 1 shows the clustering of 50,050 Ti-H
M3GNet MD snapshots into 3000 clusters.

Step 5: Stratified sampling. Finally, stratified sampling of k structures
from each cluster is then performed to construct a robust training set. If
k = 1, the features with the shortest Euclidean distance to the centroid of
each cluster will be selected. If k is greater than 1, features in each cluster will
be sorted according to their Euclidean distances to the respective centroid,
and then k features will be selected at constant index intervals. When k is
greater than the size of certain clusters, all data in those clusters will be
selected, and the user can choosewhether or not to allowduplicate selection.
Similarly, the choice of k depends on the desired coverage and computa-
tional budget.

The remaining steps are similar to standard MLIP development pro-
cedures in the literature. Static DFT calculations are performed on the
M ≤ n × k structures from the DIRECT sampling procedure. While the
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Fig. 1 | Workflow of DImensionality-Reduced Encoded Clusters with sTratified
(DIRECT) sampling. The standard steps in MLIP development are in black boxes,
while the key conceptual improvements proposed in this work are highlighted in
purple boxes. Themethods in the brackets are those used in the present work, though
they can be substituted with other similar approaches.

https://doi.org/10.1038/s41524-024-01227-4 Article

npj Computational Materials |           (2024) 10:43 2



DIRECT sampling approach can be integrated into an active learning loop,
it is designed toobtain comprehensive coverageof the configuration spaceof
interest prior toDFT calculations andminimize/eliminate the need for active
learning iterations. It should also be noted that most of the steps in the
conceptual DIRECT sampling workflow can be replaced by alternative
methods, e.g., the choice of the structure featurizer, the dimensionality
reduction technique, and the clustering algorithm.

Generating a more diverse Materials Project training set
We will first demonstrate the utility of the DIRECT sampling approach
using one of the largest datasets that have been used in MLIP fitting - the
MPF.2021.2.8.All dataset. The MPF.2021.2.8.All dataset includes all ionic
steps from both the first and second relaxation calculations in Materials
Project36 (see Methods section for details).

Figure 2 compares the coverage of feature space by manual sampling
(MS) and DIRECT sampling approaches on the MPF.2021.2.8.All dataset.
TheMS set, which contains 185,877 structures, is constructed following the
approach outlined by Chen et al.6, which selects the first and middle ionic
steps of the first relaxation and the last step of the second relaxation. Using
DIRECT sampling with n = 20,044 and k = 20, i.e., sampling at most
20 structures fromeach of the 20,044 clusters, a dataset of 185,670 structures
is constructed, approximately the same size as the MS set.

Figure 2a compares the explained variance vs the PCs of the encoded
features using the M3GNet and MEGNet formation energy models. It can
be seen that the M3GNet-encoded features are significantly more efficient,
with a cumulative explained variance of 49% and 93% for the first 2 and 14
PCs, respectively. In contrast, the cumulative explained variance for the first
2 and 14 PCs for the MEGNet-encoded features are 25% and 57%,
respectively. This indicates that the incorporation of the 3-body interactions
in M3GNet leads to a more robust encoding of the diverse structures and
chemistries in theMPF.2021.2.8.All dataset. From the plots of the first two
PCs of the M3GNet-encoded features of the MS set (Figure 2b) and

DIRECT set (Figure 2c), it can be clearly observed that the MS set under-
samples structures located at the boundaries of the feature space, while the
DIRECTset providesmore comprehensive coverage. The coverage score for
the first 14 PCs was calculated as

Pnb
i¼1 ci=nb, where the entire range of

values for eachPC isdivided intonbbins, and ci equals 1 if data in the i
thbin is

successfully sampled, and 0 otherwise. The coverage score of the entire
MPF.2021.2.8.All set is 1 by definition. Using nb = 50,000, we find that the
coverage scores of the DIRECT set across the first 14 PCs are all close to 1,
with an average of 0.996,while the coverage scores of theMS set are all below
0.8with an average of 0.642. Similar trends are observed for the 128-element
M3GNet feature space (see Supplementary Fig. 1).

Figure 3 compares the distribution of the energies, forces, and
stresses in the MS set and DIRECT set relative to the entire
MPF.2021.2.8.All (‘All’) dataset. Despite having a comparable total
number of structures, the DIRECT set provides a better coverage of
the entire configuration space, with a much larger MAD in energies,
forces, and stresses compared to the MS set. This can be attributed to
the better sampling of uncommon local environments in feature
space by DIRECT sampling compared to MS. It is worth noting that
this MS scheme is designed with domain expertise and outperforms
random sampling (RS) for coverage of both structure features and
PES properties (see Supplementary Fig. 2).

Training a more reliable M3GNet universal potential
Figure 4 compares the performance of the M3GNet UPs trained on the
DIRECT and MS sets (referred to as M3GNet-DIRECT and M3GNet-MS,
respectively) relative to the ground truth DFT. The training protocols are
largely similar to the ones used in the original M3GNet UP, with minor
modifications as outlined in the Methods section. Two test sets were con-
structed from a random sample of 5% of the DIRECT set and MS set,
excluding any structures showed up in the training and validation processes
of bothM3GNet-DIRECT andM3GNet-MS. These two test sets are labeled

Fig. 2 | Comparison of DIRECT versus manual sampling (MS). a Explained
variance of the first 30 principal components of the encoded features using the
M3GNet and MEGNet formation energy models. Visualization of the coverage of

the first two PCs of theM3GNet-encoded structure features by bMS and cDIRECT
sets. d Feature coverage scores for the first 14 PCs of theM3GNet-encoded structure
features by the MS set and DIRECT set.
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as ‘test DIRECT’ and ‘test MS’, containing 7635 and 7684 structures,
respectively.

As expected, bothM3GNet UPs provide the best performance on
their respective datasets, i.e., the M3GNet-DIRECT outperforms
M3GNet-MS on the DIRECT test set, while the reverse is true on the
MS test set (Figure 4a–f). However, the M3GNet-MS UP performs
significantly worse on the DIRECT test set than on the MS test set,
with MAEs in energies and forces that are about an order of magni-
tude larger than those for the MS test set. In contrast, the M3GNet-
DIRECT UP has comparable MAEs across both the DIRECT and MS
test sets. It should be stressed that the DIRECT test set is the more
challenging of the two, with a greater number of data points with large
energies, forces, and stresses as well as large MADs. The average
MAEs in energies, forces, and stresses of the M3GNet-DIRECT UP
across both the DIRECT and MS test sets (0.041 eV atom−1, 0.101 eV
Å−1, and 0.54 GPa, respectively) are only slightly higher than the test
errors reported for the original M3GNet UP (0.035 eV atom−1,
0.072 eV Å−1, and 0.41 GPa, respectively6. Figure 4g–i shows the
cumulative error distribution for the M3GNet UPs on the combined
data in ‘test DIRECT’ and ‘test MS’. While M3GNet-MS and
M3GNet-DIRECT have relatively similar errors for ~90% of the test
structures, M3GNet-DIRECT significantly outperforms M3GNet-
MS (lower energy, force and stress errors) for the remaining ~10% of
test structures that are most challenging. Therefore, M3GNet-
DIRECT exhibits less overfitting and is more reliable across a larger
portion of the PES compared to M3GNet-MS, which is tuned towards
accurate simulation of common configurations. These results also
illustrate the limitations of using simple held-out test sets to compare
the performance of ML models.

To better assess the performance of the M3GNet UPs, we have cal-
culated the energies above hull (Ehull) for a dataset of 506 O-containing
compounds and 291 S-containing hypothetical materials unseen by both
M3GNet UPs. This dataset was randomly selected from the ~30 million
hypothetical materials generated by Chen et al.6 (see Methods for details).

From Fig. 5, the M3GNet-DIRECT UP provides an improved pre-
diction ofEhull for hypotheticalmaterials compared to theM3GNet-MSUP.
While the performance improvement is relatively small for the
O-containing compounds, a significant reduction in error is observed for
the S-containing compounds. For instance, the error in Ehull by M3GNet-
DIRECT and M3GNet-MS is less than 0.091 and 0.158 eV atom−1,
respectively for 50% of the S-containing hypothetical materials. The dis-
tribution of errors for the M3GNet-DIRECT is comparable between the
O-containing and S-containing hypothetical materials. In contrast, the
M3GNet-MS UP performs much worse for the S-containing materials
relative to the O-containingmaterials. These observations can be attributed
to the fact that the original Materials Project dataset contains a pre-
ponderance of O-containing materials (34,556) and significantly fewer
S-containing materials (5333) among the 62,783 compounds.

Developing an accurate MLIP for titanium hydrides
As illustrated in Fig. 1, the two most computationally intensive steps in the
development of MLIPs are the generation of the configuration space and
DFT calculations of energies and forces. Often-used strategies to sample
configuration space include highly expensive AIMD simulations and
iterative efforts in active learning (AL)workflows.The advent ofUPs such as
M3GNet can provide the means to bypass ab initio methods and minimize
or even eliminate AL iterations for the generation of a diverse configura-
tion space.

Fig. 3 | Coverage of PES data by different samplingmethods.Distribution of a energies, b forces and c stresses inMPF.2021.2.8.All (referred as ‘All’), MS set, and DIRECT
set are colored purple, green, and orange, respectively. Mean absolute deviation (MAD) of each data set is annotated.
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In this section, we demonstrate the capability of the DIRECT
sampling approach combined with the M3GNet UP to construct reli-
able MLIPs. Here we have chosen the moment tensor potential (MTP)
to study titanium hydrides (TiHn). Titanium and its alloys are attrac-
tive for a wide variety of functional applications due to their excellent
mechanical properties and corrosion resistance40. However, if exposed
to hydrogen sources, these alloys are susceptible to hydride formation
in the form of TiHn, leading to crack initiation and potential
mechanical failure41. The kinetics of the hydriding process depends on
several factors, including the rates of hydrogen transport, motivating
us to develop MLIPs for predicting hydrogen diffusion in TiHn.
Hydrogen is well-known to be highly diffusive in these systems, even at
ambient temperatures, and a relatively short time step, e.g., ~0.5 fs, is
required for stable MD simulations. Therefore, this system provides a
robust test for our proposed workflow. Moreover, we note that these
descriptor-based MLIPs are more computationally efficient for studies
of simpler chemistries due to their lower model complexity.

To generate a comprehensive configuration space for TiHn, multi-
temperatureMD simulations using theM3GNet-DIRECTUPwere carried
out on a comprehensive set of hydrogen compositions (see Methods sec-
tion). For comparison, two other sets of structures were constructed by
AIMD and MTP AL, including: (i) 75,000 snapshots of AIMD simulations
of HCP Ti36H2, BCC Ti36H36, and FCC Ti36H72 at 1000 K; and (ii)
2077 structures collectedbyMTPAL for the same274MDscenarios applied
byM3GNetMD. Figure 6 reports the first two principal components (PCs)
of M3GNet-encoded features for each structure generation method. It is
shown thatAIMDsimulations only sample a small part of the configuration
space due to the short simulation time scales and limited structure diversity.
In contrast, MD simulations using the M3GNet-DIRECT UP sample the
largest configuration space, encompassing most of the configuration space
visited by the MTP AL and AIMD simulations. Coverage of the few
structures visited by theALprocess that lie outside of theM3GNet-DIRECT
set may require additional MD conditions and/or the coupling of AL with
our proposed DIRECT sampling strategy.

Fig. 4 | Performance of M3GNet universal potentials (UPs) trained using the
DIRECT andMS training sets.Parity plots for a energies, b forces, and c stresses for
the M3GNet UP trained on the DIRECT set. The equivalent plots for the M3GNet

UP trained on the MS set are shown in plots (d–f). The cumulative errors of
g energies, h forces, and i stresses in the two test sets by the two UPs are also plotted.
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DIRECT sampling is applied to select 1 structure each from 954
clusters of the 274,000 M3GNet MD snapshots. The first 7 PCs provide a
total explained variance of 98.58% of the M3GNet structure features are
chosen to construct the Ti-H feature space according to Kaiser’s rule. DFT
static calculations of 947 successfully converged and were used as the
training set for MTP-DIRECT (see details in Methods). To compare the
accuracy of energy and force predictions by ‘MTP-DIRECT’ and ‘MTP-AL’,
two test sets were constructed:
• The ‘test-AIMD’ set comprises 400 AIMD snapshots selected from

four 10-ps AIMD trajectories (3 NVT runs for HCP Ti36H2, BCC
Ti36H36, andFCCTi36H72at 1000 K, and1NpTrun forFCCTi36H72at

3000 K). 100 snapshots were selected from each AIMD trajectory at
0.1 ps intervals.

• The ‘test-MTP 1ns’ set comprises 1092 structures extracted from the
final snapshots from NpT MD simulations conducted at 300, 650,
1000, 1350, 1700, and 2050 K for the 91 TiHn supercells with MTP-
DIRECT and MTP-AL.

DFT static calculations were then performed to obtain energies and
forces for both test sets. As shown in Fig. 7, bothMTPs provide comparable
test MAE below 7meV atom−1 and 0.1 eV Å−1 for energies and forces,
respectively. More importantly, predictions by both MTPs lie closely to the
diagonal line, indicating their high reliability for the predictions of Ti-H
energies and forces. The MAE in energy of MTP-DIRECT is only slightly
higher by ~1meV atom−1 than that of MTP-AL for both test sets. This
slightly larger error is probably related to the fact that the MTP-DIRECT is
trained with 947 structures, half of that generated by the MTP-AL process
(2077). Another potential explanation is that AL samples the training
structures directly from MTP trajectories, and the test structures are thus
less extrapolative forMTP-AL. Nevertheless, MTP-DIRECT achievesmore
than satisfactory accuracies for energy and forcepredictions inns-scaleMD/
NpT simulations across a wide range of temperatures without a cumber-
some active learning process.

To further evaluate the MD reliability of MTP-DIRECT, the same AL
process used to trainMTP-AL is applied toMTP-DIRECT. OneMD run is
considered reliable if no snapshots throughout the 10 ps have extrapolation
grade γ ≥ 3, which is a fairly strict threshold25. As shown in Fig. 8, all MD
runs by MTP-DIRECT at 300 and 1000 K for the 91 Ti-containing Ti-H
structures successfully completed at the 0thAL iteration without emergence
of any structures with γ over 3, indicating that theMTP-DIRECT is already
reliable without AL optimization for those MD scenarios. After just 5 AL
iterations,MTP-DIRECT can reliably complete the 91MD runs for Ti-H at
3000 K and the MD run for H72 at 300 K. In comparison, AL from scratch,
i.e., using the 92 MD starting structures as initial training set, took ~10 and
~20 AL iterations to reach full reliability of MD runs for Ti-H structures at
300 K and at 3000 K, respectively. It took 28 iterations to reliably complete
the MD simulation of H72 at 300K. Hence, the application of DIRECT
sampling to construct the initial MTP-DIRECT reduces the number of AL
iterations to reach MD reliability by 75% and the number of static DFT
calculations by 50% compared to the simple AL scheme.

An accurate prediction of hydrogen diffusion in titanium hydrides is
challenging because of the nature of H atoms and the complex phase

Fig. 5 | Comparison of M3GNet-DIRECT and M3GNet-MS UPs for extrapolation on hypothetical structures. Cumulative absolute errors for energy above hull (Ehull)
prediction for a O- and b S-containing hypothetical materials by M3GNet-DIRECT and M3GNet-MS UPs.

Fig. 6 | Plot of the first two principal components of the feature space of TiHn

(0 ≤ n ≤ 2). It is sampled by structures from three different sources, i.e., 75,000
AIMD snapshots for HCP Ti36H2, BCC Ti36H36, and FCC Ti36H72 at 1000 K, 2063
configurations from MTP AL, and 273,000 MD NpT snapshots from M3GNet-
DIRECT. H2 structures are excluded in this analysis to ensure better resolution for
Ti-containing structures.
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diagramof the systems, comprisingHCP, BCC, and FCCphases at different
hydrogen atomic percentages. To further compare the two MTPs, MD
simulations were carried out to investigate hydrogen diffusion in HCP
Ti36H2, BCC Ti36H36, and FCC Ti36H72. As reported in Fig. 9a, bothMTPs
reproduce the trends of hydrogenMSD at 1000 K predicted byAIMDNVT
simulations, i.e., themean square displacement (MSD) ofH is highest in the
BCCphase and lowest in the FCCphase. The largerfluctuation of hydrogen
MSD in theHCPTi36H2phase inAIMDsimulations canbe attributed to the
limited number of hydrogen atoms in the AIMD cell. This is largely ame-
liorated with the use of 3 × 3 × 2 supercells in MTP simulations, thanks to
the computational efficiency of the MLIPs.

We then carried out 1-ns MD/NpT simulations with MTP-AL and
MTP-DIRECT to study hydrogen diffusivity throughout a temperature
range of 300–1000 K with a 100 K interval. As shown in the Arrhenius plot
in Fig. 9b and Table 1, bothMTPs exhibit good agreement on the predicted
activation energy (Ea) and diffusivity. The simulated Ea of hydrogen dif-
fusion by MTP-DIRECT and MTP-AL are 0.42 and 0.49 eV in the HCP
Ti36H2 phase, 0.14 and 0.16 eV in the BCC Ti36H36 phase, and 0.91 and
0.80 eV in FCC Ti36H72 phase, respectively. These results are in excellent
agreementwith experimentallymeasuredEa of 0.45 eV inHCPTi from873
to 1298 K42, 0.15 eV in BCC Ti from 555 to 625 K43, and 0.92 eV in FCC Ti
from 670 to 880 K44. Meanwhile, the experimentally measured hydrogen
diffusivities are 3 × 10−5, 8 × 10−5, and 6 × 10−8 cm2/s for HCP, BCC, and

FCC at 1000 K, 800 K, and 800 K, respectively, which are in line with the
predictions from both MTPs.

Discussion
In summary, we have demonstrated a robust DImensionality-Reduced
EncodedClusters with sTratified (DIRECT) sampling approach to generate
training structures for MLIP development. We also demonstrated that MD
simulations using the M3GNet universal potential can be used to generate
an initial large configuration space for DIRECT sampling. In many cases, a
satisfactory, stable MLIP can be obtained with DIRECT sampling without
AL. Even when AL is necessary to further fine-tune the MLIP, DIRECT
sampling significantly reduces the number of AL cycles and the total
number of DFT static calculations required - the most computationally
expensive step in MLIP development.

In this work, we have used the final GCL output vector from a pre-
trained M3GNet formation energy model as the structure encoder. We
believe this to be a reasonable choice given that the M3GNet formation
energy model has been trained on a diverse range of structures and che-
mistries. The final GCL output, therefore, encodes all relevant chemical
information for energy prediction. To our knowledge, there are few other
structure encoders that currently satisfy this requirement.

The training cost of the MLIP is controlled by two parameters - the
number of clusters n and the number of samples per cluster k. For a given

Fig. 7 | Test energy and force errors ofMTP-AL andMTP-DIRECT.Parity plots of a energies and b forces predicted byMTP-ALwith respect toDFT energies and forces in
two test sets. The equivalent plots for MTP-DIRECT are shown in (c, d).
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computational budget of M DFT static calculations, there can be several
choices of n and k for a total configuration space ofN structures. As a rule of
thumb, one should bias towards having a large number of clusters n, i.e.,
n ≈M, to ensure coverage of the extrema of the configuration space.
However, k > 1 can be used to reduce the CPU and memory requirements
for clustering when n =M is not feasible for large N andM. This sampling
approach also enables an ‘interlacing’ approach to building MLIPs. For
instance, one can build an initial MLIP using k = 1, and increasing k if a
higher resolution coverage of the configuration space is deemed necessary
for an accurate MLIP. We further note that an appropriate value of M

depends on both the nature of the simulated system and the MLIP archi-
tecture. For instance, Zuo et al.11 previously showed that even for the same
system (e.g., bccMo), the number of training structures necessary to achieve
a desired energy and force accuracy is different for the Gaussian approx-
imationpotential (GAP)2,moment tensorpotential (MTP)4, neural network
potential (NNP)1, and spectral neighbor analysis potential (SNAP)3. One
possible way to estimate a reasonable value for M is based on previous
MLIPs fitted with the same architecture for systems with similar bonding
(e.g., ionic vs covalent vsmetallic bonding, coordination, etc.). Alternatively,
one can converge the MLIP with respect to n and k.

Finally, we note that DIRECT sampling is agnostic to the chosenMLIP
architecture.Here,wehavedemonstrated its application via the trainingof an
M3GNet universal potential with improved extrapolability and a reliable
moment tensor potential for Ti-H. DIRECT sampling can also be used to
create datasetswith improved structure and chemical diversity to benchmark
different MLIP architectures. This work paves the way towards robust
development and assessment ofMLIPs across any compositional complexity.

Methods
Materials projectMPF.2021.2.8.All dataset
TheMaterials Project dataset used in this work is similar to theMPF.2021.2.8
dataset used by Chen et al.6 in the fitting of the M3GNet UP6,35. The
MPF.2021.2.8 dataset comprises 187,687 ionic steps of 62,783 compounds in
theMPdatabase asofFeb8,20216,35.However,while theMPF.2021.2.8dataset
samples the first andmiddle ionic steps of the first relaxation and the last step
of the second relaxation for calculations in the Materials Project, our initial,
unsampled dataset includes all ionic steps from both the first and second
relaxation calculations inMaterials Project36. In addition to the existing filters
applied inMPF.2021.2.8, i.e., excluding any snapshots with a final energy per
atom greater than 50meV atom−1 or atom distance less than 0.5Å, we have
further fine-tuned the dataset by excluding ionic steps where: (1) electronic

Fig. 9 | MD simulations of H diffusion in HCP Ti36H2, BCC Ti36H36, and FCC
Ti36H72. aMean squared displacement (MSD) of H atoms throughout 10-ps AIMD
NVT and MTP MD/NVT simulations at 1000 K. b Arrhenius plot based on 1-ns
MD/NpT simulations by the two MTPs from 300 to 1000 K with 100 K intervals.

Diffusivities plotted only above temperatures where sufficient diffusion events are
observed for a rigorous analysis. For MTP MDs, much larger 3 × 3 × 2 supercells of
the AIMD cells were used.

Fig. 8 | The evolution of MTP MD stability by AL starting from two initial
training sets. Case 1: 947 training structures for MTP-DIRECT serves as the initial
training set. Case 2: 92 initial structures for the 274 AL scenarios. Evolution at the
three different AL temperatures are plotted separately.

Table 1 | Comparison of computed hydrogen diffusivities and activation energies with experimental values in relevant lattice
systems and temperature ranges

Lattice Computational composition H diffusivity (10−5 cm2/s) Activation energy (eV)

MTP-AL MTP-DIRECT Experiment MTP-AL MTP-DIRECT Experiment

FCC Ti648H1296 0.006 (800 K) 0.006 (800 K) 0.006 (800 K) 0.80 (800–1000 K) 0.91 (800–1000 K) 0.92 (670–880 K)

BCC Ti648H648 3.6 (600 K) 3.8 (600 K) 4 (600 K) 0.16 (300–1000 K) 0.14 (300–1000 K) 0.15 (555–625 K)

HCP Ti648H36 4.1 (1000 K) 5.4 (1000 K) 3 (1000 K) 0.49 (500–1000 K) 0.42 (500–1000 K) 0.45 (873–1123 K)
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relaxation has not been reached and (2) at least one atom have no neighbors
within the cutoff radius (5Å). Last but not least, data of all structures with
forces over 10 eVÅ−1 were removed or substitutedwith better converged PES
information. (see detailed discussion in below paragraphs of DFT calcula-
tions) This cleaned-up dataset contains a total of 1,315,097 structures, and
henceforth will be known as theMPF.2021.2.8.All dataset.

Ti-H MTP-DIRECT training set
To generate a comprehensive configuration space for the Ti-H
chemistry45,46, NpT MD simulations using the using the refitted M3GNet-
DIRECT UP were carried out on 91 supercells of crystalline and grain
boundary TiHn (0 ≤ n ≤ 2) structures at 300, 1000, and 3000 K, and a
3 × 3 × 2 supercell of the most stable H2 structure in MP (P63/mmc, mp-
24504) at 300 K. The 91 supercells of TiHn include the following:
• 36 crystalline Ti36H36n supercells with H interstitial defects (0 ≤ n ≤ 2).

Four phases of Ti are considered, which are hexagonal (P6/mmm,mp-
72), hexagonal close pack (hcp, P63/mmc, mp-46), body-centered
cubic (bcc, Im�3 m, mp-73) and face-centered cubic (fcc, Fm�3 m, mp-
6985). The latter three are known TiHn phases in experiment45, while
the P6/mmmTi is a polymorph with comparable formation energy as
that of theknownHCPTi according to theMaterials Project36. For each
phase, 9 compositions are spanned from n = 0 to n = 2, and H atoms
are randomly inserted to tetrahedral and octahedral interstitial sites,
following experimental observations45.

• A 3 × 3 × 4 supercell of the face-centered tetragonal (fct) ε-TiH2 (I4/
mmm,mp-24726), which has the maximum known hydrogen storage
in Ti (n = 2) at any temperature or pressure45.

• 54 grain boundary (GB) Ti structures with n H interstitial defects
(0 ≤ n ≤ 2). For each of the three known competing TiHn phases in
experiment45, two GB orientations were considered, including one
twist GB and one symmetric-tilt GB. Following the same procedure of
inserting H atoms into crystalline Ti, 9 stoichiometries of TiHn

(0 ≤n ≤ 2) were generated for eachGB orientation. In every GBmodel,
the distance between the two boundaries is at least 10Å.All 274 MD
runs were performed to 10 ps with a time step of 0.5 fs, in line with
previous AIMDworks for hydrogen diffusion47,48. Therefore, eachMD
trajectory contains 20,001 snapshots, where DIRECT sampling was
applied to select one snapshot from each of one thousand clusters,
constructing a configuration space of 274,000 MD snapshots.

Structure encoders
The MatErials Graph Network (MEGNet) and Materials 3-body Graph
Network (M3GNet) formation energy models trained on the 2019.4.1
Materials Project crystals data set were used as structure encoders. Both the
MEGNet andM3GNet models have been described extensively in previous
works6,37,38,49, and interested readers are referred to those publications for
details. For MEGNet, the atomic features and bond features after graph
convolutions are aggregated in the set2set operation and then concatenated
with state features to a 96-element output vector. For M3GNet, the atomic
features after graph convolutions are updated and weighted-summed to a
64-element vector, which is then concatenated with the state features to
obtain a 128-element output vector. These operations preserve permutation
invariance. The final concatenated vectors from these models therefore
encode the relevant structure/chemistry for the prediction of the formation
energy. In this work, the concatenated 96-D vector of MEGNet and the
concatenated 128-D vector of M3GNet were utilized as structure features.

M3GNet universal potential
To refit theM3GNet UP, we have adopted the same settings as that used in
the training of the original M3GNet UP6, including a 90:5:5 train:valida-
tion:test random split, a 1:1:0.1 weight ratio for energy (eV atom−1), force
(eVÅ−1), and stress (GPa) in a Huber loss function with δ = 0.01, an Adam
optimizer with initial rate of 10−3 and a cosine decay to 10−5 in 100 epochs.
One significant modification from the original M3GNet UP is that the
model complexity is expanded by doubling the dimension of both atom

embeddings and multi-layer perceptrons from 64 to 128. The performance
of theM3GNet UPs trained with the original model complexity is provided
in Supplementary Fig. 3 for comparison. Further, the isolated atomsof all 89
elements in MPF.2021.2.8.All were added into M3GNet training set to
improve the extrapolability of the final potential. All other structures with
isolated atoms were removed from the training set. Finally, for faster con-
vergence, training was stopped if the validation metric did not improve for
40 epochs, instead of 200 epochs.

Moment tensor potential for Ti-H
Twomoment tensorpotentials (MTPs)4,25, i.e.,MTP-Al andMTP-DIRECT,
were fitted for the Ti-H system with two training sets, i.e., AL set and
DIRECT set, respectively. The MTP cutoff radius rc and maximum level
levmax werefixed at 5Å and 20, respectively. In linewith previousworks, the
weights of energies, forces, and stresses were set at 1, 0.01 and 0,
respectively11,13,18. For MTP-DIRECT, training was conducted with the 947
training structures sampled by M3GNet-DIRECT UP and DIRECT sam-
pling in 274MD scenarios. For MTP-AL, AL was performed under exactly
the same 274 MD scenarios explored by M3GNet-DIRECT UP, and the
initial training set contains 1 H2 and 91 TiHn supercells. To quantify the
extent towhich anMTPextrapolates for a configuration (cfg)with respect to
the training set, Gubaev et al.25 defines an extrapolation grade (γ) as:

γðcfgÞ ¼ max
1≤ j ≤m

jðb1ðcfgÞ . . . bmðcfgÞÞA�1j ð1Þ

Where b is the sum of MTP basis functions describing atomic local envir-
onments of cfg,m is the number of trainable parameters correlating b to the
training energies, and A is an m ×m matrix composing of the m most
distinct structures in the training set. For a given cfg, γ > 1 means that
replacing another cfg in A with it can increase j detðAÞj, i.e., the MTP
extrapolates when γ(cfg) > 1 and interpolates otherwise. Reasonable extra-
polation is usually definedas 1 < γ < 2,while risky extrapolation is defined as
γ > 10 (requiring addition of these structures to the training set via active
learning). Interested readers are referred to previous works14–16,24 for more
details. To avoid the selection of similar structures and ensure efficiency of
AL process, the threshold extrapolation grades for breaking the simulation
and selection of structures were set at 3, i.e., γbreak = γselect = 3. After 28 AL
iterations, the training set of MTP-AL comprises 2077 training structures,
and all 274 MD runs can reliably run for > 10 ps. All training, evaluation,
and simulation withMTPwere performed usingMLIP4,25, LAMMPS50, and
the Materials Machine Learning (maml) Python package51.

DFT calculations
DFT calculations were performed using the Vienna ab initio simulation
package (VASP52,53). The Perdew–Burke–Ernzerhof (PBE54) generalized
gradient approximation (GGA) functional was used for MPF.2021.2.8.All
and Ti-H systems.

Spin-polarized self-consistent calculations were carried out to all the
13,614 structures inMPF.2021.2.8.All with forces over 10 eV Å−1 to obtain
more accurate PES information than that of the loosely converged electronic
relaxations by geometry optimizations in the Materials Project36. The elec-
tronic convergence criterion (EDIFF) was set at 10−5 eV, and the smallest
allowed spacingbetweenkpoints (KSPACING)was set at 0.35Å−1.All other
settings were consistent with those used for static calculations in the Mate-
rials Project. The maximum number of electronic steps was set at 100. Over
83% were successfully converged. Due to these efforts, significant
improvements in simulation reliability of M3GNet-MS and M3GNet-
DIRECTwere observed for Ti-H system.As shown in Supplementary Fig. 4,
both M3GNet-MS and M3GNet-DIRECT can stably run MD NpT at
3000 K for FCCTi36H72 and achieve satisfactory agreement with the kinetic
energy and potential energy of AIMD under same simulation scenarios. In
contrast, the M3GNet-v0.1, which is trained on original data in
MPF.2021.2.8 without the above discussed noise deduction steps, is not
reliable forMDNpT simulation at 3000 K for FCCTi36H72 evenwith a very
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small step interval of 0.1 fs. This comparison highlights the importance of
noisededuction for trainingdataofMLIPs.Weareworkingon suchaneffort
for theMPF.2021.2.8.Alldataset but it is beyond the scopeof thismanuscript.

This dataset contains 506 and 291 O- and S-containing hypothetical
materials, which were randomly selected from the ~30million hypothetical
materials generated by Chen et al.6. One thousand hypothetical materials
were initially selected for each group. DFT geometry optimizations were
performed to those 2000 structures using the settings for structure relaxa-
tions in the Materials Project. Only converged results were collected to be
test sets for these two groups of hypothetical compounds. Subsequently,
geometry optimizations were performed usingM3GNet UPs with the same
force convergence criterion of 0.1 eVÅ−1, and the energy above hull (Ehull)
was calculated relative to the DFT-calculated structures in the Materials
Project.

Spin-polarized DFT calculations for TiHn were performed with an
energy cutoff of 500 eV. ThreeAIMDNVT simulations were performed for
three TiHn supercells, including HCP Ti36H2, BCC Ti36H36, and FCC
Ti36H72 at 1000 K, andoneAIMDNpTsimulationwas conducted at 3000 K
for FCC Ti36H72. All AIMD simulations were conducted for 25,000 steps
with a time step of 0.5 fs, in accordance with previous AIMD works for
hydrogen diffusion47,48. A single Γ k point was used to sample the Brillouin
zone. Self-consistent calculations were performed with an electronic
relaxation convergence threshold of 10−4 eV, while the density of the k grid
in the reciprocal space was at least 100 /Å−3. The maximum number of
electronic steps was set at 100.

Reporting summary
Further information on research design is available in the Nature Research
Reporting Summary linked to this article.

Data availability
All data required to reproduce theDIRECT sampling results are available to
download at: https://figshare.com/articles/dataset/20230723_figshare_
DIRECT_zip/23734134. It contains training, validation, and test data as
well as model parameters of M3GNet-MS and M3GNet-DIRECT UPs,
training and test data as well as model parameters of MTP-AL and MTP-
DIRECT for Ti-H, and pre-processedM3GNet structural features of the 1.3
million structures in MPF.2021.2.8.All and the 274,000 M3GNet MD
structures of Ti-H. Example input files for DFT calculations performed in
this work are provided as Supplementary Materials.

Code availability
The DIRECT sampling is implemented as a scikit-learn pipeline in the
MAterials Machine Learning (maml) public Github repository (https://
github.com/materialsvirtuallab/maml). Example notebooks are provided in
the repository to reproduce the sampling forMPF.2021.2.8.All andM3GNet
MD structures of Ti-H.
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