
npj | computationalmaterials Article
Published in partnership with the Shanghai Institute of Ceramics of the Chinese Academy of Sciences

https://doi.org/10.1038/s41524-025-01742-y

Materials Graph Library (MatGL), an open-
source graph deep learning library for
materials science and chemistry

Check for updates

TszWai Ko1 , Bowen Deng2,3, Marcel Nassar4, Luis Barroso-Luque2,3, Runze Liu1, Ji Qi1, Atul C. Thakur1,
Adesh Rohan Mishra1, Elliott Liu1, Gerbrand Ceder2,3, Santiago Miret4 & Shyue Ping Ong1

Graph deep learning models, which incorporate a natural inductive bias for atomic structures, are of
immense interest in materials science and chemistry. Here, we introduce the Materials Graph Library
(MatGL), an open-source graph deep learning library for materials science and chemistry. Built on top
of the popular Deep Graph Library (DGL) and Python Materials Genomics (Pymatgen) packages,
MatGL is designed to be an extensible “batteries-included” library for developing advanced model
architectures for materials property predictions and interatomic potentials. At present, MatGL has
efficient implementations for both invariant and equivariant graph deep learningmodels, including the
Materials 3-body Graph Network (M3GNet), MatErials Graph Network (MEGNet), Crystal Hamiltonian
Graph Network (CHGNet), TensorNet and SO3Net architectures. MatGL also provides several pre-
trained foundation potentials (FPs) with coverage of the entire periodic table, and property prediction
models for out-of-box usage, benchmarking and fine-tuning. Finally, MatGL integrates with PyTorch
Lightning to enable efficient model training.

In recent years, machine learning (ML) has emerged as a powerful new
tool in the materials scientist’s toolkit1–4. Sophisticated ML models have
found their way into amultitude of applications. SurrogateMLmodels for
“instant” predictions of properties such as formation energies, band gaps,
mechanical properties, etc.5–13 have greatly expanded our ability to explore
vast chemical spaces for new materials. In addition, Machine learning
(ML) has been widely used for parameterizing potential energy surfaces
(PESs)14–16, enabling the direct prediction of potential energies, forces, and
stresses based on atomic positions and chemical species. These ML
interatomic potentials (MLIPs)17–27 have provided us with the means to
parameterize complex PESs to perform large-scale atomistic simulations
with unprecedented accuracies.

Among ML model architectures, graph deep learning models, also
known as graph neural networks (GNNs), utilize a natural representation
that incorporates a physically intuitive inductive bias for a collection of
atoms28. Figure 1 depicts a typical graph deep learning architecture. In the
graph representation, the atoms are nodes and the bonds between atoms
(usually defined based on a cutoff radius) are edges. In most implementa-
tions, each node is represented by a learned embedding vector for each
unique atom type (element). Additionally, some architectures such as the
MatErials Graph Network (MEGNet)5 and Materials 3-body Graph

Network (M3GNet)29 also include an optional global state feature (u) to
provide greater expressive power, for instance, in the handling of multi-
fidelitydata30,31. A graphdeep learningmodel is constructedbyperforming a
sequence of update operations, also known as message passing or graph
convolutions. In the final layer, the embeddings are pooled and passed
through a final MLP layer to arrive at a final prediction. GNNs can be
broadly divided into two classes in terms of how they incorporate symmetry
constraints. Invariant GNNs use scalar features such as bond distances and
angles to describe the structure, ensuring that the predicted properties
remain unchanged with respect to translation, rotation, and permutation.
Equivariant GNNs, on the other hand, go one step further by ensuring that
the transformation of tensorial properties, such as forces, dipole moments,
etc. with respect to rotations are properly handled, thereby allowing the use
of directional information extracted from relative bond vectors. For a
comprehensive overview of different GNN architectures and their appli-
cations, readers are referred to recent literature32,33. Given sufficient training
data, GNN architectures such as Nequip34, MACE35, Equiformer36 and
many others37–39 have been shown to provide state-of-the-art accuracies in
the prediction of various properties and PESs5,40–42. Furthermore, unlike
other MLIP architectures based on local-environment descriptors, GNNs
have a distinct advantage in the representation of chemically complex
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systems. The recent emergence of foundation potentials (FPs)29,43–47, i.e.,
universal MLIPs with coverage of the entire periodic table of elements, is a
particularly effective demonstration of the ability ofGNNs to handle diverse
chemistries and structures.

At the time of writing, most software implementations of materials
GNNs48–50 are for a single architecture, built on PyTorch-Geometric51,
Tensorflow52 or JAX53. However, recent benchmarks show that the Deep
Graph Library (DGL)54 outperforms PyTorch-Geometric in terms of
memory efficiency and speed, particularly when training large graphs under
the same GNN architectures for various benchmarks54,55. This improved
efficiency enables the training ofmodels with larger batch sizes as well as the
performance of large-size and long-time-scale simulations.

In this work, we introduce the Materials Graph Library (MatGL), an
open-source modular, extensible graph deep learning library for materials
science. MatGL is built on DGL, Pytorch and the popular PythonMaterials
Genomics (Pymatgen)56 and Atomic Simulation Environment (ASE)57

materials software libraries. MatGL provides a user-friendly workflow for
training property models and MLIPs, with data pipelines and Pytorch
Lightning training modules designed for the unique needs of materials
science. In its present version, MatGL provides implementations of several
state-of-the-art invariant and equivariant GNN architectures, including the
Materials 3-body Graph Network (M3GNet)29, MatErials Graph Network
(MEGNet)5, Crystal Hamiltonian Graph Neural Network (CHGNet)43,
TensorNet58 and SO3Net49, as well as pre-trained FPs and property models
based on these architectures. To facilitate the use of pre-trained FPs in
atomistic simulations, MatGL also implements interfaces to widely used
simulation packages such as the Large-scale Atomic/Molecular Massively
Parallel Simulator (LAMMPS) and the Atomic Simulation Environment
(ASE). The intent for MatGL to serve as a common platform for the sci-
entific community to collaboratively advance graph deep learning archi-
tectures and models for materials science.

Results
In the following sections, we present the MatGL framework, with the
manuscript organized as follows:We start with a schematic overview of the
coremodel components, followedby a concise summaryof thedata pipeline
and preprocessing steps. We then introduce the available graph neural
network (GNN) architectures for property prediction and the construction
of MLIPs. Next, we detail the key components involved in training and
deploying these architectures, explaining their integration into MatGL.
Additionally, we introduce the simulation interfaces for atomistic simula-
tions and the command-line interface for various applications. Finally, we
demonstrate the performance of different GNN architectures on widely
used datasets, encompassing both molecular and periodic systems.

MatGL architecture
MatGL is organized around four components: data pipeline, model archi-
tectures, model training and simulation interfaces. Figure 2 gives an

overview of MatGL architecture, and detailed descriptions of each com-
ponent are provided in the following paragraphs.

The first core component introduced is the data pipeline and pre-
processing. TheMatGLdata pipeline consists primarily ofMGLDataset, a
subclass of DGLDataset, and MGLDataLoader, a wrapper around
DGL’s GraphDataLoader. MGLDataset is used for processing,
loading and savingmaterials graph data, and includes tools to easily convert
Pymatgen Structure or Molecule objects into directed or undirected
graphs, while MGLDataLoader batches a set of preprocessed inputs with
customized collate functions for training and evaluation. Themain features
of MGLDataset and MGLDataLoader are summarized below.

An important feature of MGLDataset is to provide a pipeline for
processing graphs from inputs, loading and saving DGL graphs and labels.
The commonly used inputs consist of the following items:
• structures: A set of Pymatgen Structure or Molecule

objects.
• converter: A graph converter that transforms a configuration into a

DGL graph.
• cutoff: A cutoff radius that defines a bond between two atoms.
• labels: A list of target properties used for training.Other inputs such

as global state attributes and a cutoff radius for three-body interactions
are optional depending on the model architecture and applications.
The default units for PES properties areÅ for distance, eV for energy,
eV Å−1 for force, and GPa for stress. MGLDataset also includes the
ability to cache pre-processed graphs, which can facilitate the reuse of
data for the training of different models. Once the MGLDataset is
successfully loaded or constructed, the dataset can be randomly split
into the training, validation, and testing sets using the DGL
split_datasetmethod. MGLDataLoader is then used to batch
the separated training, validation and optional testing sets for either
training or evaluation via PL modules.
Another core component is the set of GNNarchitectures implemented

in the matgl.models package, using different layers implemented in the
matgl.layers package. The models and layers are all subclasses of
torch.nn.Module, which offers forward and backward functions for
inference and calculation of the gradient of the outputs with respect to the
inputs via the autograd function. Different models will utilize different
combinations of layers, but, where possible, layers are implemented in a
modular manner such that they are usable across different models (e.g., the
MLP layer implementing a simple feed-forward neural network). MatGL
offers various pooling operations, including set2set59, average, andweighted
average, to combine atomic, edge, and global state features into a structure-
wise feature vector for predicting intensive properties. The pooled structural
feature vector is then passed through an MLP for regression tasks, while a
sigmoid function is applied to the output for classification tasks.

Table 1 summarizes the GNN models currently implemented in
MatGL. The details of the models were already comprehensively described
in the provided references, and interested readers are referred to those

Fig. 1 | Graph deep learning architecture for materials science. Vn and En denotes
the set of node/atom ({vi}) and edge/bond features ({eij}), respectively, in the nth

layer. Some implementations include a global state feature (U) for greater expressive
power. Between layers, a sequence of edge (fE), node (fV) and state (fU) update

operations are performed. fE, fV and fU are usually modeled using multilayer per-
ceptrons. In the final step, the edges, nodes and state features are pooled (P) and
passed through a multilayer perceptron to arrive at a prediction.
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works. It should be noted that this is merely an initial set of model imple-
mentations. In addition, all MatGL models subclass the MatGLModel
abstract base class, which specifies that all models should implement a
convenience predict_structure method that takes in a Pymatgen
Structure/Molecule and returns a prediction.

A key assumption in MLIPs is that the total energy can be
expressed as the sum of atomic contributions. For PES models, the
graph-convoluted atomic features are fed into either gated or
equivariant gated multilayer perceptrons to predict the atomic
energies. In addition, we have implemented a Potential class in
the matgl.apps.pes package that acts as a wrapper to handle
MLIP-related operations. For instance, a best practice for MLIPs is to
first carry out a scaling of the total energies, for example, by com-
puting either the formation energy or cohesive energy using the
energies of the elemental ground state or isolated atom, respectively,
as the zero reference. The Potential class takes care of accounting
for the normalization factor in the total energies, as well as computing
the gradient to obtain the forces, stresses and hessians. Other atomic
properties such as magnetic moments and partial charges can also be
predicted at the same time with the Potential class.

For the training module, MatGL leverages the PL framework, which
supports different efficient parallelization schemes anda variety of hardware
including CPUs, GPUs and TPUs. MatGL provides two different PL
modules including ModelLightningModule and Potential-
LightningModule for property model and PES model training,
respectively. Figure 3 illustrates the training workflow for building property
models and MLIPs in MatGL. A set of reference calculations including
structures and target properties is generated using ab initio methods and
experiments. The reference structures are converted into a list of Pymatgen
Structure/Molecule objects, and target properties are stored in a dictionary,
where the property names are the keys and corresponding values denote
items. These inputs are passed throughMGLDataset, followedby splitting
the dataset into training, validation, and optional test sets, and then
MGLDataLoader to obtain batched graphs, stacked state attributes, and
labels. The desired GNN model architecture is initialized with requisite
settings such as the number of radial basis functions, cutoff radii, etc.
Various algorithms such asGlorot60 andKaiming61 implemented inPytorch

can also be used to initialize the learnable parameters in GNNs. The PL
training framework includes two modules: PotentialLightning-
Module and ModelLightningModule. The primary difference
between them lies in their respective loss functions. In Mod-
elLightningModule, the loss is defined solely as the error between the
predicted and target structural properties. In contrast, Potential-
LightningModule uses a weighted sum of errors across various PES
properties, such as energies, forces, and stresses. It can also optionally
include other atomic properties that influence the PES, such as magnetic
moments and charges.

As for performing molecular simulations, MatGL currently
provides interfaces to the Atomistic Simulation Environment (ASE)
and Large-scale Atomic/Molecular Massively Parallel Simulator
(LAMMPS) to perform simulations with Potential models, i.e.,
MLIPs. For ASE, a PESCalculator class, initialized using a
Potential class and state attributes, calculates energies, forces,
stresses, and other atomic properties such as magnetic moments and
charges for an ASE Atoms object, with the necessary conversion into
DGL graphs being handled within the class itself. In addition, a
Relaxer class allows users to perform structural optimization with
different settings such as optimization algorithms (e.g. FIRE62,
BFGS63,64 and Gaussian process minimizer (GPMin)65) and variable
cell relaxation for both Pymatgen Structure/Molecule and
ASE Atoms objects. Finally, a MolecularDynamics class makes
it easy to perform MD simulations under different ensembles with
various thermostats such as Berendsen66, Andersen67, Langevin68 and
Nosé-Hoover69,70. Additional functionality to compute material
properties such as elasticity, phonon analysis and finding minimum
energy paths using PESCalculator are available in the MatCalc71

package. An interface to LAMMPS has also been implemented by
AdvanceSoft, which utilizes PESCalculator to provide PES pre-
dictions for simulations. This interface enables the use of MatGL for a
wide range of simulations supported by LAMMPS, including replica
exchange72 and grand canonical Monte Carlo (GCMC)73, etc.

Finally,MatGLoffers a command-line interface (CLI) for performing a
variety of tasks including model training, evaluation and atomistic simu-
lations. This interface minimizes the user’s effort and time in preparing

Fig. 2 | Overview of MatGL. Class names are in italics. MatGL can be broken down
into fourmain components: 1. the data pipeline component preprocesses a set of raw
data into graphs and labels; 2. the architecture component build the GNN model
using modular layers implemented; 3. the training component utilizes PyTorch

Lightning to train either property models or MLIPs; and 4. the simulation compo-
nents integrates the MatGL models with atomistic packages such as ASE and
LAMMPS to perform molecular dynamics simulations.
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scripts to run calculations such as property prediction, geometry relaxation,
MD, model training, and evaluation.
• matgl predict. This command is used to perform structure-wise

property prediction, such as formation energy and band gap of
materials. The prediction requires at least a structure file that can be
readusing theStructure.from_filemethod fromPymatgenand
a directory that stores the trained property model. Additionally,
predictions for multiple structure-wise properties are also supported.

• matgl relax. This command is used to perform geometry relaxa-
tion using the Relaxer class with a trained MLIP. Users can flexibly
decide whether to perform variable-cell relaxation and can adjust the
maximumallowable force components to define the relaxation criteria.
The default optimizer is the FIRE algorithm62, although other
optimization algorithms are also available.

• matgl md. This command is used to performMD simulations using
the MolecularDynamics class. Similar to matgl relax, it also
requires a structure and a trained MLIP. Users can customize various
simulation parameters, including the step size, ensemble type, number
of time steps, target pressure, and temperature. Furthermore,

ensemble-dependent settings such as collision probability, external
stress, and coupling constants for thermostats can be also adjusted to
specific systems.

• matgltrain andmatglevaluate. These commands are used to
perform model training and evaluation, including data preprocessing,
splitting, setting up the GNN architecture, and configuring Lightning
modules. Users only need toprovide an inputfile containing structures
and their corresponding target properties, along with the settings for
graph construction, GNN architecture, and training hyperparameters.
These settings can be modified in the configuration file or specified as
input arguments.

Property benchmarks
In the following paragraphs, we benchmark the performance of different
GNN architectures, trained on various popular datasets, in terms of accu-
racy and inference time.

We first compared the performance of various GNN architectures for
predicting various properties of the QM9 molecular74 and Matbench bulk
crystal75 datasets. The QM9 dataset contains 130,831 organic molecules

Table 1 | Graph neural network models implemented in MatGL

Name Type Brief description Function Ref

Prop. Pred. MLIP

MEGNet Invariant GNN with global state vector. Yes No 5

M3GNet Invariant Extension of MEGNet with 3-body interactions. Used to implement the first FP as well as property models. Yes Yes 29

CHGNet Invariant GNN with regularization of node features using magnetic moments from DFT. No Yes 43

TensorNet Equivariant O(3)-equivariant GNN using Cartesian tensor representations, which is more computationally efficient
compared to higher-rank spherical tensor models.

Yes Yes 58

SO3Net Equivariant Minimalist SO(3)-equivariant GNN based on the spherical harmonics and Clebsch-Gordan tensor product. Yes Yes 49

A brief summary of the architectures available in MatGL, including invariant models (MEGNet, M3GNet, CHGNet) and equivariant models (TensorNet and SO3Net), designed for property prediction (Prop.
Pred.) and machine learning interatomic potentials (MLIP).

Fig. 3 | Workflow for training property models
and machine learning interatomic potentials
in MatGL. The initial raw data includes a list of
Pymatgen Structure/Molecule objects, optional
global state attributes and labels such as structure-
wise and PES properties. These inputs are used to
preprocess training, validation and optional test sets
containing a tuple of DGL graphs, labels, optional
line graphs and state attributes using MGLData-
set. These datasets are then fed into MGLData-
Loader to create the batched inputs including
graphs, state attributes and labels for training and
validation. The GNN architecture is initialized with
chosen hyperparameters and passed as inputs to PL
training modules with training and validation data
loaders.
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including H, C, N, O and F. GNN models were trained on the isotropic
polarizability (α), free energy (G) and the gap (Δϵ) between the highest
occupiedmolecular orbital (HOMO) and the lowest unoccupiedmolecular
orbital (LUMO), which were computed with DFT with the B3LYP
functional.

Table 2 shows the MAE of different GNN architectures. Consistent
with previous analyses, MEGNet obtains the highest errors, while other
models are comparable. For example,MEGNet achieves validation and test
MAEs of 0.037 eV for free energy, while other models reach a range of
0.025–0.027 eV. It should be noted that these experiments aim to demon-
strate the capabilities of MatGL with consistent settings. For comparing the
best accuracy between different architectures, an extensive search for pre-
processing treatments of target properties and hyperparameters, such as
learning rate, scheduler, and weight initialization, is required.

For Matbench dataset, we trained four different GNNs on three
properties: formation energy (Eform), Voigt-Reuss-Hill bulk modulus
(log(Kvrh)), and shearmodulus (log(Gvrh)). The datasets contained 132,752,
10,987, and 10,987 crystals, respectively, resulting in a total of 12 property
models.

Table 3 reports the MAEs of material properties including formation
energy, bulk/shear modulus and bandgap with respect to reference DFT-
PBE results. All GNN models achieve state-of-the-art accuracy in terms of
training, validation and test errors74,76. MEGNet generally obtains the
highest MAEs compared to other models. For instance, the calculated
validation and test MAEs of MEGNet for formation energy are 0.037 eV
atom−1, while other models significantly reduce the error by 40%. The poor
performance of MEGNet is attributed to the less informative geometric
representation of structures based only on bond distances. Recent studies77

find that distance-only GNNs fail to uniquely distinguish atomic environ-
ments, which affects the accuracy of structure-wise properties due to
degeneracies caused by the incompleteness of representation. Othermodels
likeM3GNet, TensorNet and SO3Net achieve considerably higher accuracy
by taking additional geometric information, suchasbondangles and relative
position vectors, into account. The learning curves for QM9 andMatbench
are provided in Supplementary Figs. S1, S2.

We also evaluate the efficiency of different GNNs for property pre-
diction. Table 4 shows the inference time of the test set for the QM9 and
Matbench datasets for the different GNN models. MEGNet achieves the
shortest inference time with 12 s and 11 s for around 6500 small molecules
and crystals although the accuracy is the worst. TensorNet generally
achieves the best compromise between accuracy and efficiency, taking less
than 15 s for both datasets. M3GNet and SO3Net has the longest inference
time for molecules and crystals, respectively. This shows that the SO3Net is
slower thanM3GNet when the number of neighbors within a spatial cutoff
sphere is larger.

PES benchmarks
The following paragraphs summarize the performance of various GNN
model architectures in constructing MLIPs using popular large databases
such as the ANI-1x78, MPF-2021.2.8 and the recently release Materials
Potential Energy Surface (MatPES) dataset v2025.179. The results and
benchmarks are presented below.

The first benchmark dataset is ANI-1x78, which contains roughly 5
million conformers generated from 57,000 distinctmolecules containingH,

C,N, andO for constructing general-purpose organicmolecularMLIPs.We
also included the Transfer-Learning M3GNet (M3GNet-TL) MLIPs from
the pre-training ANI-1xnr dataset80 by adapting the pretrained embedded
layer and only optimizing other model parameters for comparison. We
noted that the ANI-1xnr dataset encompasses a significantly larger con-
figuration space compared to ANI-1x, owing to the extensive structural
diversity obtained fromcondensed-phase reactions. These reactions include
carbon solid-phase nucleation, graphene ring formation from acetylene,
biofuel additive reactions, methane combustion, and the spontaneous for-
mation of glycine from early earth small molecules.

Table 5 shows the MAEs of energies and forces computed with dif-
ferent GNNs with respect to DFT. Both M3GNet and TensorNet achieve
comparable training and validation MAEs of energies and forces, while
SO3Net significantly outperforms them. A similar conclusion can be drawn
from the test errors showing that SO3Net achieves the lowestMAE in terms
of energies and forces.

The results are consistent with previous findings, indicating that
equivariant models are typically more accurate and transferable than
invariant models for molecular systems. Moreover, M3GNet-TL reduces
the errors in energies and forces by 10–15% compared to M3GNet trained
from scratch and also exhibits significantly faster convergence, as shown in
Supplementary Fig. S3. The improvements are attributed to the pre-trained
embedded layer from ANI-1xnr dataset that covers a greater diversity of
local atomic environments.

To further evaluate the extrapolation abilities of GNNmodels, we
compare the energies and forces on the molecules obtained from
COMP6 benchmarks with respect to DFT. Figure 4 shows the MAE of
energies and forces computed with M3GNet, M3GNet-TL, TensorNet
and SO3Net. Both M3GNet and M3GNet-TL perform the worst in
terms of energy and force errors above 14 meV atom−1 and 0.14 eVÅ−1

on the ANI-MD dataset, which comprises molecular dynamics (MD)
trajectories of 14 well-known drug molecules and 2 small proteins. The
large errors may be attributed to the poor transferability of MLIPs
trained on small molecules to larger ones, as the largest molecule in the
training set contains 63 atoms, whereas the molecules in the ANI-MD
dataset have 312 atoms. The TensorNet significantly reduces the error
of energies and forces to 11 meV atom−1 and 0.1 eVÅ−1, while SO3Net
further reduces to 2.3 meV atom−1 and 0.044 eVÅ−1. This trend can be
also found in other benchmark datasets.

To further demonstrate the performance of constructed MLIPs from
MatGL with state-of-the-art models, we calculated the energy of two well-
known molecules with respect to the dihedral torsion. Figure 5a shows the
PES of ethane during torsion. All MLIPs, including reference ANI-1x78 and
MACE-Large81, predict the same torsion angles for themaxima andminima
of thePESs,while the energybarriers are slightly different. For instance, both
ANI-1x and M3GNet predict a higher energy barrier of 0.15 eV, whereas
MACE-Large obtains 0.125 eV. SO3Net and TensorNet predict the lowest
energy barrier of 0.1 eV. For the case of a more complex di-methyl-
benzamide molecule, all the MLIPs provide a similar shape of PESs with
respect to different dihedral angles. Still, the predicted barrier heights are
different. For example, the ANI-1x model has the largest barrier height of
1.5 eV at 180∘, while both TensorNet and M3GNet considerably under-
estimate the energy barrier by 0.6 eV. The energy barriers for SO3Net, and
MACE-Large range from 0.9 to 1.2 eV.

Table 2 | Mean absolute errors (MAEs) of GNN models trained on QM9 dataset

Model α (a3
0) G (eV) Δϵ (eV)

MEGNet 0.066/0.113/0.114 0.032/0.037/0.037 0.031/0.079/0.081

M3GNet 0.040/0.089/0.087 0.019/0.025/0.025 0.014/0.059/0.061

TensorNet 0.050/0.083/0.083 0.024/0.027/0.027 0.021/0.064/0.065

SO3Net 0.046/0.068/0.069 0.022/0.025/0.027 0.024/0.059/0.060

Calculated MAEs of isotropic polarizability α, free energy G and HOMO-LUMO gap Δϵ with MEGNet, M3GNet, TensorNet and SO3Net. The numbers are reported in the order of training/validation/test
MAEs. The dataset was divided into training, validation, and test sets with a split ratio of 0.9, 0.05, and 0.05, respectively.
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The second dataset is the manually selected subset of MPF.2021.2.8.,
which contains all geometry relaxation trajectories from both the first and
second step calculations in theMaterials Project. The total number of crystal
structures is 185,877.Moreover, the isolated atoms of 89 elements were also
included in the training set to improve the extrapolability of the final
potential. Thedetails of data generation and selection canbe found in ref. 82.
Here we excluded SO3Net from the benchmarks due to its relatively high
sensitivity to noisy datasets, which led to extremely large fluctuations in
training errors.

Table 6 shows that CHGNet generally outperforms M3GNet and is
noticeably better than TensorNet in terms of energies, forces and
stresses. The convergence of validation loss and PES properties was
plotted in Supplementary Fig. S4. This can be attributed to the fact that
the CHGNet provides additional message passing between angles and
edges compared to M3GNet. Moreover, the DFT calculation settings,
such as electronic convergence and grid density in reciprocal space, are
less strict, resulting in large numerical noise in forces and stresses, which
makes the training particularly challenging for equivariant models that
are very sensitive to these properties. Furthermore, most structures are
crystals without complicated structural diversity, which reduces the
strength of equivariant models by providing a more informative repre-
sentation of complex atomic environments. More detailed benchmarks
on structurally diverse datasets with stricter electronic convergence for
constructing general-purpose FPs are required in future studies.’ We
also performed benchmarks on crystals, particularly focusing on binary
systems obtained from the Materials Project database.

The first step is to investigate the performance of GNNs on the geo-
metry relaxation of binary crystals and corresponding energies with respect
toDFT. It should be noted that such benchmarks for existing FPs have been
reported in recent studies83,84. Figure 6a shows the cumulative structural
fingerprint distance between DFT and MLIP relaxed structures using
CrystalNN algorithm85, which indicates the similarity between the two
structures based on the local atomic environments. Overall, both M3GNet
and TensorNet have similar performance in terms of fingerprint distance.
CHGNet only shows amodest improvement, withmore structureswithin a
distance of about 0.01 compared to M3GNet and TensorNet. Figure 6b
shows the cumulative absolute energy errors ofMLIPs with respect to DFT.
CHGNet predicts that about 60% of structures have an energy difference
below 25meV atom−1. This is comparable toM3GNet and 10% better than
TensorNet.

We also compared the predicted bulk modulus with different models.
Figure 7 shows the parity plots of bulk modulus computed with FPs and
DFT.Allmodels have similarR2 scores andMAEs, reaching 0.8 and 20GPa.
Finally, we computed the heat capacity of binary systems at 300K under
phonon harmonic approximation and compared the results with DFT
reference data at the PBEsol level obtained from Phonondb. Figure 8 shows
that all models are in very good agreement with DFT. A very recent study86

noted a small shift between PBE and PBE-sol on the prediction of phonon
properties. Nevertheless, these benchmarks demonstrate that our trained
MLIPs can provide a preliminary reliable prediction on material properties
by performing geometry relaxations and phonons. These FPs can perform
reasonably stable MD simulations across a wide range of systems at low
temperatures, as their covered configuration space partially overlaps with
relaxation trajectories near the equilibrium region29,43,87.

We have also conducted additional benchmarks of TensorNet trained
on the recently developedMatPES dataset79. Here, we are using only the FPs
trained on MatPES PBE data only (TensorNet-MatPES-PBE-v2025.1).
These benchmarks include surface energies, vibrational entropies, phonon
dispersions, and the structural properties of amorphous materials. These
properties are generally derived from structures that are not within the
training dataset.

Figure 9 shows the surface energies of fcc Cu and bccMo predicted by
different MLIPs. The TensorNet-MatPES-PBE-v2025.1 predictions are in
excellent agreement with DFT (mostly within 0.1 Jm−2). The custom
qSNAP MLIPs88 perform well for fcc Cu surface energies, but exhibit a
consistent underestimation of the Mo surface energies. The TensorNet-
MPF performs significantly worse for both systems and does not reproduce
even the qualitative trends in surface energies between different Miller
indices for Mo. This is likely due to well-known deficiencies in the MPF
training dataset as discussed by Kaplan et al.79. Figure 10 shows the calcu-
lated phonon dispersion and vibration entropy as a function of temperature
for silicon (Materials Project ID: mp-149) and gallium oxide (Materials
Project ID: mp-1243) from DFT, TensorNet-MatPES-PBE-v2025.1 and
custom SNAP and GAP MLIPs. TensorNet-MatPES-PBE-v2025.1 also
shows good agreementwithDFTand customMLIPs, including SNAP88 and
GAP89. Finally, the structural properties of amorphous Li3PS4 were calcu-
lated using TensorNet-MatPES-PBE-v2025.1 and the custom DeepMD
potential90. Figure 11 shows that TensorNet-MatPES-PBE-v2025.1 gen-
erally agrees with DeepMD in terms of the peak positions of the RDF. The
small differences inmagnitudemay be attributed to the additional Grimme
D3 dispersion correction91 and the use of different pseudopotentials.
Overall, the above extended benchmarks illustrate that the FPs can be used
to study various material properties with reasonably good accuracy.

The reliability of material properties extracted from MD simulations
critically depends on the accuracy of trained MLIPs92,93. MatGL provides
ASE and LAMMPS interfaces to perform MD simulations, enabling the
benchmarking of different GNN architectures42,94. In addition to the accu-
racy of GNNs, computational efficiency is crucial for large-scale atomistic
simulations. We used the above MLIPs to perform MD simulations with
1000 timesteps for scalability testswith a singleGPUviaASE andLAMMPS
interfaces. Figure 12a shows the computational time forNVT simulations of
non-periodicwater clusters usingASE,with increasing sizes from15 to 2892
atoms. SO3Netbecomes significantlymoredemanding thanTensorNet and
M3GNet when simulating clusters withmore than 100 atoms. TensorNet is

Table 3 | Mean absolute errors (MAEs) of GNNs trained on Matbench dataset

Model Eform (eV atom-1) log(KVRH) (log(GPa)) log(GVRH) (log(GPa)) EG (eV)

MEGNet 0.015/0.037/0.037 0.033/0.063/0.075 0.046/0.085/0.090 0.072/0.213/0.220

M3GNet 0.007/0.020/0.020 0.039/0.054/0.065 0.032/0.081/0.091 0.032/0.160/0.170

TensorNet 0.008/0.024/0.024 0.031/0.054/0.060 0.046/0.082/0.090 0.043/0.163/0.177

SO3Net 0.008/0.022/0.022 0.035/0.052/0.060 0.031/0.079/0.083 0.033/0.169/0.180

Calculated MAEs of formation energy Eform, Voigt-Reuss-Hill bulk KVRH and shear modulusGVRH as well as bandgap EG with MEGNet, M3GNet, TensorNet and SO3Net. The numbers are reported in the
order of training/validation/test MAEs. The dataset was divided into training, validation, and test sets with a split ratio of 0.9, 0.05, and 0.05, respectively.

Table 4 | Inference times of GNN models for property
prediction

Model QM9 Matbench

MEGNet 11.996 11.137

M3GNet 19.715 20.089

TensorNet 14.945 13.694

SO3Net 14.371 32.601

The numbers represent the inference times (in seconds) for MEGNet, M3GNet, TensorNet, and
SO3Net on the QM9 (free energy) and Matbench (formation energy) test sets, which contain 6541
and6637structures, respectively. All property predictionswereperformedusinga singleNvidiaRTX
3090 and A6000 GPU for QM9 and Matbench, respectively.
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the most efficient for all cases compared to M3GNet and SO3Net due to its
model architecture, which does not require costly three-body calculations
and tensor products. With a more scalable and optimized LAMMPS
interface, Fig. 12b shows the computational time of NPT simulations for
silicon diamond supercells ranging from 8 to 5832 atoms, where each Si
atom contains around 70 neighbors within a spatial cutoff of 5Å. CHGNet
achieves the shortest computational time, while the computational cost of
M3GNet is the highest. This is likely due to the additional cost of a larger
cutoff for counting triplets and three-body interactions. These models can
already serve as a “foundation" model for preliminary calculations with
reasonably good accuracy. Moreover, building customized MLIPs often
requires extensive AIMD simulations to sample the snapshots from the
trajectories for training. Such demanding AIMD simulations can be
replaced by the FPs with considerably reduced costs82.

Discussion
Graph deep learning has made tremendous progress in atomistic simula-
tions. Here we have implemented MatGL, which covers four major com-
ponents including data pipelines, state-of-the-art graph deep learning
architectures, Pytorch-Lightning trainingmodules, interfaceswith atomistic
simulation packages, and command-line interfaces.

We also provided detailed documentation and examples to help users
become familiar with training their custom models and conducting simu-
lations using ASE and LAMMPS packages in our public Github repository.
In addition, we provided several pretrained property predictionmodels and
FPs, which can be used out-of-the-box for organic molecules andmaterials.
With the combination of excellent chemical scalability and large databases,

these models empower users to perform simulations across a wide range of
applications, speeding up materials discovery by enabling high-throughput
screening of hypothetical materials across a large chemical space95–98.
Moreover, users can efficiently train their customized models with sig-
nificantly faster convergence through fine-tuning from our available pre-
trained models. For example, our recently developed Dimensionality-
Reduced Encoded Clusters with sTratified (DIRECT) sampling method
significantly reduces the number of training structures required to cover
large configuration spaces generated by high-throughput MD simulations
using FPs82. In the GitHub repository, we have provided Jupyter notebook
tutorials on fine-tuning FPs for target applications. This fine-tuning pro-
cedure can be adapted and combined with high-throughput automation
frameworks such as atomate99 for active learning where necessary. Addi-
tionally, MatGL allows developers to design their own graph deep learning
architectures and benchmark their performance with minimum effort,
complimented by the modules available in the library. MatGL has been
integrated into various frameworks, including MatSciML100 and the
AmsterdamModeling Suite101, expanding access for researchers inmaterials
science and chemistry to conduct computational studies on a wide range of
materials usingGNNs. In futurework, the efficiencyofMLIPs canbe further
enhanced by integrating multi-GPU support with efficient parallelization
algorithms44. Besides, training on massive databases exceeding millions of
structuresmay encounter bottlenecks due to thememory needed to store all
graphs and labels. To address this, the lightning memory-mapped database
can be utilized to manage such large-scale training with affordable com-
putational resources. Relevant tools for constructing reliable and robust
MLIPs-such as uncertainty quantification102,103, active learning workflows10
4,105, and model interpretability106,107-will also be integrated into MatGL in
the near future. We expect that the upcoming version of MatGL will sub-
stantially increase the accessible training set size for constructing FPs and
enhance the efficiency of large-scale MD simulations, enabling the study of
many interesting phenomena in materials science and chemistry.

Methods
Model training
All models were trained using PotentialLightningModule for
structure-wise properties and ModelLightningModule for potential
energy surfaces (PESs). The optimizer was chosen to be the AMSGrad
variant of AdamWwith a learning rate of 10−3. Theweight decay coefficient
was set to 10−5. The cosine annealing scheduler was used to adjust the
learning rate during the training. The maximum number of iterations and
minimum learning rate were set to 104 and 10−5, respectively. The mean

Table 5 | Mean absolute errors on ANI-1x subset

Model Energy (meV atom−1) Force (eV Å−1)

M3GNet 4.565/4.592/3.746 0.092/0.093/0.085

M3GNet-TL 3.923/3.968/3.381 0.081/0.082/0.075

TensorNet 4.424/4.448/3.015 0.088/0.088/0.074

SO3Net 2.281/2.286/1.596 0.046/0.046/0.035

The numbers are the calculated energy and force errors of M3GNet, TensorNet, and SO3Net
compared to DFT. The “M3GNet-TL" indicates the transfer learning from the pre-trained M3GNet
model on ANI-1xnr dataset. The numbers are listed in the order of training, validation, and test. The
dataset was divided into training, validation, and test sets with a split ratio of 0.9, 0.05, and 0.05,
respectively.

Fig. 4 | Mean absolute errors on COMP6 benchmark. The bar plot of a energy and b force errors for M3GNet, transfer-learning M3GNet (M3GNet-TL) from ANI-1xnr,
TensorNet and SO3Net with respect to DFT.
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absolute error of predicted and target propertieswas selected to calculate the
loss function. The additional relative importance of energies, forces and
stresses (1:1:0.1)was introduced for PES training. Themaximumnumber of
epochswas set to 1000, and early stoppingwas achievedwith the patience of
500 epochs. The gradient formodel weight updateswas accumulated over 4
batches, and the gradient clipping threshold to prevent gradient explosion
was set to 2.0. The input settings for the data loaders are listed in Supple-
mentary Tables S1, S2, and a complete set of hyperparameters for each
model and trainingmodule is provided in SupplementaryTables S3–S7. For
detailed descriptions of all models, the interested readers are referred to the
respective publications.

Benchmark details
For dihedral torsion, the initial structures of ethane and dimethylbenzamide
were relaxed using the FIRE algorithm with molecular MLIPs under a
stricter force threshold of 0.01 eV Å−1. The conformers for scanning the
dihedral angles were generated using RDKit108 at 1∘ intervals, resulting in a
total of 359 single-point calculations toproduce the PES.As for benchmarks
on geometry relaxation, the 20160 initial DFT-relaxed binary crystals were
taken from the Materials Project database. All these structures were re-
optimized using FPs with variable cell geometry relaxation within a lighter

force threshold of 0.05 eV Å-1. The default settings for CrystalNN were
employed to measure the similarity between the DFT and MLIP-relaxed
structures based on the fingerprints of their local environments. It should be
noted that two structures failed during relaxation with CHGNet due to the
failed construction of bond graphs caused by unphysical configurations. To
benchmark Voigt-Reuss-Hill bulk modulus and heat capacity, a total of
4653 and 1183binary crystalswith availableVoigt-Reuss-Hill bulkmodulus
and heat capacity data were obtained from the Materials Project and Pho-
nonDB, respectively. Additional filters were applied to unconverged DFT
calculations and unphysical bulk modulus and the remaining 3576 struc-
tures finally were analyzed. As for heat capacity, 1183 binary crystals were
compared. All predicted properties derived from MLIPs were calculated
using ElasticityCalc and PhononCalc from theMatCalc library. The default
settings were used, except for a stricter force convergence threshold of 0.05
eV Å-1. Notably, all phonon calculations were completed successfully with
the lighter symmetry search tolerance set to 0.1. The surface energy is
defined as

γσhkl ¼
Ehkl;σ
slab � Ehkl;σ

bulk � nslab
2Aslab

; ð1Þ

Fig. 5 | Potential energy surface of organic mole-
cules during torsion. The torsion energy profile of
a ethane and b dimethyl-benzamide were computed
with different MLIPs. The reference ANI-1x78 and
MACE-Large81 were plotted in black and purple
lines. The black arrows indicate the dihedral torsion
of molecules.

Table 6 | Mean absolute error on MPF-2021.2.8 subset

Model Energy (meV atom−1) Force (eV Å−1) Stress (GPa)

M3GNet 19.817/22.558/23.037 0.063/0.072/0.071 0.259/0.399/0.351

TensorNet 28.628/29.708/30.313 0.078/0.083/0.083 0.361/0.471/0.394

CHGNet 17.256/18.226/19.897 0.054/0.061/0.061 0.254/0.347/0319

The numbers are the calculated energy, force and stressmean absolute errors (MAEs) of M3GNet, TensorNet, andCHGNet compared to DFT. The numbers are listed in the order of training, validation, and
test. The dataset was divided into training, validation, and test sets with a split ratio of 0.9, 0.05, and 0.05, respectively.

Fig. 6 | Performance of foundation potentials for
variable-cell geometry relaxation of binary crys-
tals. a Cumulative absolute fingerprint distance of
DFT and MLIP relaxed structures using CrystalNN
algorithm, and bCumulative absolute errors of DFT
and MLIP energies of relaxed crystals.
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where Eslab andEbulk denotes the surface energywith an exposed (hkl) plane
and energy of the bulk structure, respectively. Aslab refers to the cross-
sectional area of the slab. The fcc Cu and bccMo surfaces were included in
this benchmark. All surface and bulk structures were obtained from
Materials Project. Only atomic positions were relaxed usingMLIPswith the
force threshold of 0.01 eVÅ−1 and then the relaxed structures were used to
calculate the energies. The vibrational entropy and phonon dispersion were
calculated using MatCalc interfaced with Phonopy. Silicon in the diamond
structure (Materials Project ID: mp-149) and gallium oxide (Materials
Project ID: mp-1243) were selected as test systems. The initial structures

were relaxed using a stricter force convergence threshold of 0.0001 eVÅ−1.
Atomic displacements of 0.01Å were applied to compute the force
constants. A 20 × 20 × 20 mesh was used for phonon calculations, with all
other settings kept at their default values inMatCalc. Finally, an amorphous
structure of Li3PS4 was generated using a melt-and-quench protocol,
following the methodology outlined in ref. 90. The initial structure is a 4 ×
4×3 supercell ofβ-Li3PS4, consisting of 1152 atoms in total. The systemwas
equilibrated at 1500 K for 100 ps and subsequently quenched to 300 K at a
cooling rate of 2.5 K/ps under the NPT ensemble. A subsequent 500 ps
production run was conducted to compute the radial distribution function.

Fig. 7 | Performance of foundation potentials for bulk modulus of binary crystals. Parity plots for Voigt-Reuss-Hill bulk modulus calculated with M3GNet, TensorNet
and CHGNet compared to DFT.

Fig. 8 | Comparison of foundation potentials for the heat capacity of binary crystals. Parity plots for heat capacity calculated with M3GNet, TensorNet and CHGNet
compared to DFT.

Fig. 9 | Surface energies of elemental metals. Surface energies of a fcc Cu and b bcc Mo computed with DFT and different MLIPs. The DFT data is obtained from ref. 110,
while the qSNAP potential is token from ref. 88.
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Fig. 10 | Phonon properties of silicon and
gallium oxide. a Phonon dispersion and b vibration
entropy of silicon (left) and gallium oxide (right)
computed with different MLIPs and DFT. The DFT
data is obtained from PhononDB, while the SNAP
and GAP potentials are obtained from ref. 88 and
ref. 89, respectively.

Fig. 11 | Structural properties of amorphous
material. Radial distribution functions computed
with a DeepMD and b TensorNet-MatPES-PBE-
v2025.1. The DeepMD data is token from ref. 90.

Fig. 12 | Inference time of MD simulations. The
number of timesteps per second for a NVT simula-
tions of water clusters with different sizes using ASE
and b NPT simulations of various silicon-diamond
supercells using LAMMPS is reported. All MD
simulations were performed using a single Nvidia
RTX A6000 GPU.
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Dataset details
All datasets except ANI-1x were randomly split into training, validation and
test sets with a ratio of 0.9, 0.05 and 0.05, respectively. Due to the large size of
the ANI-1x dataset, only a subset was used for demonstration purposes.We
randomly sample the conformations of each molecule with the ratio of 0.2,
0.05, and0.05 for training, validation and testing.Withmolecules containing
less than 10 conformations, all conformations are included in the training to
ensure that every molecule in the ANI-1x dataset is included in the training
set. The description of datasets was summarized in the following subsection.
The QM9 dataset consists of 130,831 organic molecules including H, C, M,
O, F. It is a subset of GDB-17 database109 for isotropic polarizability, free
energy and the gap betweenHOMOand LUMOwere calculated usingDFT
at the level of B3LYP/6-31G. TheMatbench dataset consists of 132,752 and
10,987 crystals for formation energy and bulk/shear modulus computed
with DFT, respectively. All datasets were generated using the Materials
Project API on 4/12/2019. The details can be found in ref. 74. The ANI-1x is
the extension of ANI-1 dataset78 by performing active learning based on
three different samplings including molecular dynamics, normal mode and
torsion. All energies and forces of conformers are calculated using DFT at
wB97x/6-31G level. The MPF-2021.2.8 dataset consists of 185,877 config-
urations sampled manually in the relaxation trajectories of 60,000 crystals
fromMaterials Project.Additionally, 89 different isolated elementswere also
included in the training set. Finally, the MatPES-PBE-v2025.1 dataset
consists of 434,712 structures, providing comprehensive coverage of 89
elements. These structures were sampled from 281 million snapshots gen-
erated by high-throughputmolecular dynamics (MD) simulations at 300 K,
conducted on both unit cells and supercells. A two-step DIRECT sampling
approach was developed to ensure robust coverage of the configuration
space. Interested readers are referred to ref. 79 for more details.

Data availability
All datasets used in this work are publicly available in the following links:
QM9: https://doi.org/10.6084/m9.figshare.c.978904.v5Matbench: https://
hackingmaterials.lbl.gov/automatminer/datasets.htmlANI-1x: https://doi.
org/10.6084/m9.figshare.c.4712477.v1ANI-1xnr: https://doi.org/10.6084/
m9.figshare.22814579COMP6: https://github.com/isayev/COMP6MPF-
2021.2.8: https://figshare.com/articles/dataset/20230723_figshare_DIRECT_
zip/23734134MatPES-PBE-v2025.1: https://matpes.ai/.

Code availability
All implementations are available in MatGL(https://github.com/
materialsvirtuallab/matgl). The pretrained models will be provided in the
latest released version of MatGL. Detailed examples-including the use of
pre-trained models, model training, multi-fidelity learning, and transfer
learning are provided in the examples directory of the MatGL repository.
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