
Nature Computational Science | Volume 2 | November 2022 | 718–728 718

nature computational science

Article https://doi.org/10.1038/s43588-022-00349-3

A universal graph deep learning interatomic 
potential for the periodic table

Chi Chen      & Shyue Ping Ong     

Interatomic potentials (IAPs), which describe the potential energy surface of 
atoms, are a fundamental input for atomistic simulations. However, existing 
IAPs are either fitted to narrow chemistries or too inaccurate for general 
applications. Here we report a universal IAP for materials based on graph 
neural networks with three-body interactions (M3GNet). The M3GNet IAP 
was trained on the massive database of structural relaxations performed 
by the Materials Project over the past ten years and has broad applications 
in structural relaxation, dynamic simulations and property prediction of 
materials across diverse chemical spaces. About 1.8 million materials from 
a screening of 31 million hypothetical crystal structures were identified to 
be potentially stable against existing Materials Project crystals based on 
M3GNet energies. Of the top 2,000 materials with the lowest energies above 
the convex hull, 1,578 were verified to be stable using density functional 
theory calculations. These results demonstrate a machine learning-
accelerated pathway to the discovery of synthesizable materials with 
exceptional properties.

Atomistic simulations are the bedrock of in silico materials design. The 
first step in most computational studies of materials is to obtain an 
equilibrium structure, which involves navigating the potential energy 
surface (PES) across all independent lattices and atomic degrees of 
freedom in search of a minimum. Atomistic simulations are also used 
to probe the dynamical evolution of materials systems, and to obtain 
thermodynamic averages and kinetic properties (for example, dif-
fusion constants). Although electronic structure methods such as 
density functional theory (DFT) provide the most accurate description 
of the PES, they are computationally expensive and scale poorly with 
system size.

For large-scale materials studies, efficient, linear-scaling intera-
tomic potentials (IAPs) that describe the PES in terms of many-body 
interactions between atoms are often necessary. However, most IAPs 
today are custom-fitted for a very narrow range of chemistries: often 
for a single element or up to no more than four to five elements. The 
most popular general purpose IAPs are the AMBER family of force 
fields1,2 and the universal force field (UFF)3. However, both were for-
mulated primarily for molecular/organic systems and have limited 
support and accuracy in modeling crystal structures. More recently, 
machine learning of the PES has emerged as a particularly promising 

approach to IAP development4–8. These so-called ML-IAPs typically 
express the PES as a function of local environment descriptors such 
as the interatomic distances and angles, or atomic densities, and have 
been demonstrated to substantially outperform classical IAPs across a 
broad range of chemistries9. Message-passing and graph deep learning 
models10–12 have also been shown to yield highly accurate predictions of 
the energies and/or forces of molecules, as well as a limited number of 
crystals such as Li7P3S11 (ref. 13) and LixSiy (ref. 14) for lithium-ion batteries. 
Nevertheless, no work has demonstrated a universally applicable IAP 
across the periodic table and for all crystal types.

In the past decade, the advent of efficient and reliable electronic 
structure codes15 with high-throughput automation frameworks16–19 
has led to the development of large federated databases of computed 
materials data, including the Materials Project20, AFLOW21, Open Quan-
tum Mechanical Database (OQMD)22, NOMAD23 and so on. Most of the 
focus has been on making use of the final outputs from the electronic 
structure computations performed by these databases—namely, the 
equilibrium structures, energies, band structures and other deriva-
tive material properties—for the purposes of materials screening and 
design. Less attention has been paid to the huge quantities of PES data—
that is, intermediate structures and their corresponding energies, 
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embeds the pair atom distance rij—up to a certain cut-off rc—to basis 
functions, and the atomic number Zi to element feature spaces.

The model development takes inspiration from traditional IAPs 
such as the Tersoff bond-order potential28, where the bond interaction 
eij incorporates n-body interactions using all distinct combinations of 
n − 2 neighbors in the neighborhood 𝒩𝒩i  of atom i, excluding i and j.  
We will denote this materials graph with an n-body interactions neural 
network as MnGNet for brevity. The many-body computations of the 
graph produce high-order interactions such as angles θ and dihedrals 
τ and their interactions. The many-body interactions are then aggre-
gated to bonds. Standard graph convolution steps subsequently update 
the bond, atom and state information. Such many-body calculations 
and graph convolutions can be repeated N times to construct models 
of arbitrary complexity, similar to previous materials graph network 
architectures25. In this work we will focus on incorporation of three-
body interactions only (M3GNet).

In the case of IAP fitting, the atom information maps to atom-wise 
energy Ei and is summed to the total energy E, which is then used to 
calculate forces f and stresses σ via auto-differentiation.

M3GNet IAP
To develop an IAP using the M3GNet architecture, we used crystal 
structures with corresponding E, f and σ as targets as training data. 
The model generates trainable targets via auto-differentiation with 
f = − ∂E/∂x and σ = V−1∂E/∂ϵ, where x are the atomic coordinates, V is 
the volume and ϵ is the strain.

Benchmark on IAP datasets
As an initial benchmark, we selected a diverse DFT dataset of elemental 
energies and forces previously generated by Zuo and co-workers9 for 
face-centered cubic (fcc) nickel, fcc copper, body-centered cubic (bcc) 
lithium, bcc molybdenum, diamond silicon and diamond germanium. 

forces and stresses—amassed in the process of performing structural 
relaxations.

In this work we develop the formalism for a graph-based deep 
learning IAP by combining many-body features of traditional IAPs 
with those of flexible graph material representations. Using the largely 
untapped dataset of more than 187,000 energies, 16,000,000 forces 
and 1,600,000 stresses from structural relaxations performed by the 
Materials Project since its inception in 2011, we trained a universal IAP 
for materials based on graph neural networks (GNN) with three-body 
interactions (M3GNet) for 89 elements of the periodic table with low 
energy, force and stress errors. We demonstrate the applications of 
M3GNet in phonon and elasticity calculations, structural relaxations 
and so on. We further relaxed ~30 million hypothetical structures for 
new materials discovery.

Results
Materials graphs with many-body interactions
Mathematical graphs are a natural representation for crystals and mol-
ecules, with nodes and edges representing the atoms and the bonds 
between them, respectively. Traditional graph neural network models 
for materials24–27 have proven to be exceptionally effective for general 
materials property predictions24–27, but are not suitable as IAPs due to 
the lack of physical constraints such as a continuity of energies and 
forces with the changes to the length and number of bonds.

Here we develop a materials graph architecture that explicitly 
incorporates many-body interactions (Fig. 1). The materials graph is 
represented as 𝒢𝒢 𝒢 𝒢𝒢𝒢𝒢 𝒢𝒢𝒳𝒳𝒢 𝒢M𝒢u]]), where vi ∈ 𝒢𝒢 is atom information 
for atom i; eij ∈ 𝒢 is the bond information for a bond connecting atoms 
i and j; and u is the optional global state information. A key difference 
with past materials graph implementations is the addition of xi ∈ 𝒳𝒳 
(the coordinates for atom i) and M (the optional 3 × 3 lattice matrix in 
crystals). The graph structure is passed to a graph featurizer that 
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Fig. 1 | Schematic of the many-body graph potential and the major 
computational blocks. The model architecture starts from a position-included 
graph and then goes through a featurization process, followed by the main block 
and then the readout module with energy, force and stress outputs. The 
featurization process consists of the graph featurizer and the many-body 
computation module. In the graph featurizer, the atomic numbers of elements 
are embedded into a learnable continuous feature space and the pair bond 
distances are expanded into a basis set with values and derivatives of up to 
second order, going to zero at the boundary. The many-body computation 
module calculates the three- and many-body interaction atom indices and the 

associated angles. The main block consists of two main steps, namely, the 
many-body to bond module and the standard graph convolution. The many-body 
to bond step calculates the new bond information eij by considering the full 
bonding environment 𝒩𝒩i of atom i via many-body angles such as θjik, τkijl and so 
on, and the bond lengths rik, rij, ril and so on. The standard graph convolution 
updates the bond, atom and optional state information iteratively. During the 
readout stage, the atom information in the graph is passed to a gated multilayer 
perceptron (MLP) for obtaining the atomic energy, which sums to the total 
energy. The derivatives of the total energy give force and stress outputs.
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From Table 1, the M3GNet IAPs substantially outperform classical 
many-body potentials such as the embedded atom method (EAM) 
and modified EAM (MEAM); they also perform comparably with local 
environment-based ML-IAPs such as the Behler–Parinello neural net-
work potential (NNP)4 and moment tensor potential (MTP)7. It should 
be noted that although ML-IAPs can achieve slightly smaller energy 
and force errors than M3GNet IAPs, it comes with a substantial loss in 
flexibility in handling multi-element chemistries because incorporating 
multiple elements in ML-IAPs usually results in a combinatorial explo-
sion in the number of regression coefficients and the corresponding 
data requirements. By contrast, the M3GNet architecture represents 
the elemental information for each atom (node) as a learnable embed-
ding vector. Such a framework is readily extendable to multicomponent 
chemistries. For instance, the M3GNet-all IAP trained on all six ele-
ments performed similarly to the M3GNet IAPs trained on individual 
elements. The M3GNet framework—like other GNNs—is able to capture 
long-range interactions without the need to increase the cut-off radius 
for bond construction (Supplementary Fig. 1). At the same time, unlike 
the previous GNN models, the M3GNet architecture still maintains a 
continuous variation of energy, force and stress with changes of the 
number of bonds (Supplementary Fig. 2), a crucial requirement for IAPs.

Universal IAP for the periodic table
To develop an IAP for the entire periodic table, we leveraged on one 
of the largest open databases of DFT crystal structure relaxations in 
the world, that is, the Materials Project20. In total, this dataset, named 
MPF.2021.2.8, contains 187,687 ionic steps of 62,783 compounds, 
with 187,687 energies, 16,875,138 force components and 1,689,183 
stress components. The dataset covers an energy, force and stress 
range of [–28.731, 49.575] eV per atom, [–2,570.567, 2,552.991] eV Å−1 
and [–5,474.488, 1,397.567] GPa, respectively (Fig. 2a,b). The major-
ity of structures have formation energies between –5 and 3 eV per 
atom, as shown in Supplementary Fig. 3. Although the distribution 
of forces is relatively symmetric, the stress data contain a slightly 
higher proportion of negative (compressive) stresses than posi-
tive stresses due to the well-known tendency of the Perdew–Burke–
Ernzerhof (PBE) functional to underbind. The radial distribution 

function g(r) (Fig. 2c) shows that the dataset also spans a broad 
range of interatomic distances, including small distances of less than 
0.6 Å that are essential for the M3GNet model to learn the repulsive 
interactions at close distances. The dataset encompasses 89 ele-
ments of the periodic table with their counts shown in Fig. 2d (see 
the Methods and Supplementary Table 1 for more information on the  
MPF.2021.2.8 data).

In principle, an IAP can be trained on only energies, or a combina-
tion of energies and forces. In practice, the M3GNet IAP trained only 
on energies (M3GNet-E) was unable to achieve reasonable accuracies 
for predicting either forces or stresses, with mean absolute errors 
(MAEs) that are larger than even the mean absolute deviation of the data  
(Supplementary Table 2). The M3GNet models trained with ener-
gies + forces (M3GNet-EF) and energies + forces + stresses (M3GNet-
EFS) achieved relatively similar energy and force MAEs, but the MAE in 
the stresses of the M3GNet-EFS was about half that of the M3GNet-EF 
model. Accurate stress predictions are necessary for applications that 
involve lattice changes, for example, structural relaxations or NpT 
molecular dynamics simulations. Our results suggest that it is criti-
cal to include all three properties (energy, force and stress) in model 
training to obtain a practical IAP. The final M3GNet-EFS IAP (henceforth 
referred to as the M3GNet model for brevity) achieved an average value 
of 0.035 eV per atom, 0.072 eV Å−1 and 0.41 GPa for the energy, force 
and stress test MAE, respectively.

On the test data, the model predictions and the DFT ground truth 
match well, as revealed by the high linearity and the R2 values for the 
linear fitting between DFT and model predictions (Fig. 3a–c). The 
cumulative distribution of the model errors indicate that 50% of the 
data have energy, force and stress errors that are smaller than 0.01 eV 
per atom, 0.033 eV Å−1 and 0.042 GPa, respectively (Fig. 3d–f). More 
stringent tests were performed using phonon and elasticity calcula-
tions, which were not part of the original training data. The M3GNet 
model can reproduce accurate phonon dispersion curves and density 
of states (DOS) of β-cristobalite, stishovite and α-quartz SiO2 (Sup-
plementary Fig. 4) to quantitative agreements with expensive DFT 
computations29. The M3GNet phonon DOS centers (ω̄) from phonon 
calculations using predicted forces and the frozen phonon approach 
are also in good agreement with density functional perturbation the-
ory-computed values with a MAE of 44.2 cm−1 (Fig. 3g)29. The systematic 
underestimation by the M3GNet model relative to DFT is probably due 
to the different choices of pseudopotentials; the DFT phonon calcula-
tions were performed using the PBEsol30 functional whereas the 
M3GNet training data comprised PBE/PBE + U calculations31,32. This 
systematic underestimation can be corrected with a constant shift of 
31.6 cm−1 and the MAE reduces to 28.8 cm−1. Such errors are even smaller 
than a state-of-the-art phonon DOS peak position prediction model 
which reported MAE of 36.9 cm−1 (ref. 33). We note that the DOS peak 
prediction model does not exhibit a systematic shift as it was directly 
fitted on the data by minimizing a mean squared error. Similar to DFT, 
the relationship ω̄ ∝ 1/𝒢m)2 (where ω̄ is the average frequency and m is 
the average atomic mass) is obtained (Supplementary Fig. 5). The 
M3GNet-calculated Debye temperatures are less accurate (Fig. 3h), 
which can be attributed to relatively poor M3GNet predictions of the 
shear moduli (R2 = 0.134; Supplementary Fig. 6); the bulk moduli pre-
dictions (R2 = 0.757), however, are reasonable.

The M3GNet IAP was then applied in a simulated materials discov-
ery workflow where the final DFT structures are not known a priori. 
M3GNet relaxations were performed on the initial structures from the 
test dataset of 3,140 materials. M3GNet relaxation yields crystals with 
volumes that are much closer to the DFT reference volumes (Fig. 4a). 
Although 50% and 5% of the initial input structures have volumes that 
differ from the final DFT-relaxed crystals by more than 2.4% and 22.2%, 
respectively, these errors are reduced to 0.6% and 6.6%, respectively, 
via M3GNet relaxation. Correspondingly, the errors in the predicted 
energies ̂E are also much smaller (Fig. 4b). Using the initial structures 

Table 1 | M3GNet model’s errors compared to the existing 
models EAM, MEAM, NNP and MTP on the single-element 
dataset from Zuo and colleagues9

Element M3GNet M3GNet-all EAM MEAM NNP MTP

Energy (10−3 eV per atom)

Ni 0.9 1.9 8.5 23.0 2.3 0.8

Cu 1.8 2.3 7.5 10.5 1.7 0.5

Li 2.5 4.7 368.6 — 1.0 0.7

Mo 6.3 6.8 68.0 36.4 5.7 3.9

Si 9.6 6.8 — 111.7 9.9 3.0

Ge 9.4 5.9 — — 11.0 3.7

Force (10−3 eV Å−1)

Ni 37.4 37.0 110 330 67.3 26.9

Cu 17.0 16.9 120 240 63.0 13.5

Li 22.1 24.5 140 — 63.4 13.2

Mo 193.7 271.4 520 220 198.7 148.1

Si 102.8 126.2 — 400 174.2 88.1

Ge 76.4 78.4 — — 124.3 70.3

The errors in each cell are reported as the root mean squared error (r.m.s.e.) by averaging 
results from three independent model trainings. The dashes indicate missing data. The 
M3GNet-all model trains all six elements in one model.

http://www.nature.com/natcomputsci
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for direct model predictions, the energy differences distribute broadly, 
with a considerable number of structures having errors that are larger 
than 0.1 eV per atom. All errors here were calculated relative to the DFT 
energies of the final DFT-relaxed structures for each material. The 
overall MAE is 0.169 eV per atom with ~20% of the structures having 
errors that are larger than 0.071 eV per atom (Fig. 4b). These errors are 
far too large for reliable estimations of materials stability, given that 
about 90% of all inorganic crystals in the Inorganic Crystal Structure 
Database (ICSD) have an energy above the convex hull smaller than 
0.067 eV per atom (ref. 34). By contrast, energy calculations on the 
M3GNet-relaxed structures yield an MAE of 0.035 eV per atom, and 
80% of the materials have errors smaller than 0.028 eV per atom. The 
error distributions using M3GNet-relaxed structures are close to the 

case in which we know the DFT final structures (Fig. 4b) which suggests 
that the M3GNet potential can be accurate in helping obtain the correct 
structures. In general, relaxations with M3GNet converge rapidly, as 
shown in Supplementary Fig. 7. An example of M3GNet relaxation is 
shown in Supplementary Fig. 8 for K57Se34 (Materials Project ID 
mp-685089), a material with one of the largest energy changes during 
relaxation. Convergence is achieved after about 100 steps when the 
forces fall below 0.1 eV Å−1. The X-ray diffraction pattern of the M3GNet-
relaxed structure also resembles the counterpart from DFT relaxation 
(Supplementary Fig. 8g). This relaxation can be performed on a laptop 
in about 22 s on a single Intel(R) Xeon(R) CPU E5-2620 v.4 2.10 GHz core, 
whereas the corresponding DFT relaxation took 15 h on 32 cores in the 
original Materials Project calculations.
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New materials discovery
The ability of M3GNet to accurately and rapidly relax arbitrary crystal 
structures, and predict their energies, makes it ideal for large-scale 
materials discovery. We generated 31,664,858 candidate structures as 
starting points (see Methods for details), used M3GNet IAP to relax the 
structures and calculated the signed energy distance to the Materials 
Project convex hull (Ehull-m); 1,849,096 materials have a Ehull-m of less 
than 0.01 eV per atom.

A formation energy model based on the Matbench33 Materials Pro-
ject data was developed using the same architecture as the M3GNet 
IAP model (see Supplementary Table 3). Materials with a difference in 
the signed energy distance to the Materials Project convex hull from 
this model (Ehull-f) and a Ehull-m of greater than 0.2 eV per atom were dis-
carded in the subsequent DFT analysis. This extra step removes materials 
with higher energy prediction uncertainties, which account for 13.2% 
(243,820) of the predicted materials. It should be noted that this step can 
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also be omitted to simplify the discovery workflow, although potentially 
with an impact on the hit rate of stable materials discovery. The top-1,000 
lowest Ehull-m materials from any chemistry, and the top-1,000 metal 
oxides with elements from the first five rows (excluding technetium 
due to radioactivity and rubidium due to high dominance), were then 
selected for validation via DFT relaxation and energy calculations. Only 
the most stable polymorphs were selected for each composition. It was 
found that the distribution in the DFT-calculated Ehull−dft matches well 
with the distributions of Ehull-m (Fig. 5a). For most computational materi-
als discovery efforts, a positive threshold—typically around 0.05–0.1 eV 
per atom—is applied to identify synthesizable materials. This positive 
threshold accounts for both errors in DFT-calculated energies and the 
fact that some thermodynamically meta-stable materials can be realized 
experimentally. Of the top-1,000 materials from any chemistry, 999 were 
found to have a Ehull−dft of less than 0.001 eV per atom (Fig. 5b), and none 
of them were in the Materials Project database. For the top-1,000 oxides, 
579, 826 and 935 were found to be synthesizable on the basis of Ehull−dft 
thresholds of 0.001, 0.05 and 0.1 eV per atom, respectively (Fig. 5b). 
Out of the 579 DFT-stable oxides, only five (namely, Mg4Nb2O9, Sr3V2O8, 
K2SnO2, Cd(RhO2)2 and CoMnO4) were previously known and matched 
with the Materials Project structures. The effectiveness of the M3GNet 
IAP relaxations can be seen in Supplementary Fig. 9, which shows that 
the energy changes during subsequent DFT relaxations (of the MEG3Net-
relaxed structures) are at least one order of magnitude smaller than the 
energy changes during M3GNet relaxation. The final M3GNet-relaxed 
energies are in excellent agreement with the final DFT-relaxed energies, 
with MAEs of 0.112 and 0.045 eV per atom for the top-1,000 materials in 
the any-chemistry and oxide-chemistry categories, respectively (Fig. 
5c,d). Using the M3GNet IAP, we have also assessed the dynamic stability 
of the 1,578 materials with a Ehull−dft of less than 0.001 eV per atom using 
phonon calculations. A total of 328 materials do not exhibit imaginary 
frequencies in their M3GNet phonon dispersion curves. Four phonon 
dispersion curves are shown in Extended Data Fig. 1; the others are 
provided in ‘Data availability’ section.

As a further evaluation of the performance of M3GNet for materials 
discovery, we computed the discovery rate, that is, the fraction of DFT-
stable materials (Ehull−dft ≤ 0) for 1,000 structures uniformly sampled from 
the ~1.8 million materials with a Ehull-m of less than 0.001 eV per atom. The 
discovery rate remains close to 1.0 up to a Ehull-m threshold of around 0.5 eV 
per atom, and remains at a reasonably high value of 0.31 at the strictest 
threshold of 0.001 eV per atom, as shown in Supplementary Fig. 10.  
For this material set, we also compared the DFT relaxation time cost 
with and without M3GNet pre-relaxation. The results show that without 

M3GNet pre-relaxation, the DFT relaxation time cost is about three times 
of that with the M3GNet relaxation, as shown in Supplementary Fig. 11.

Discussion
A universal IAP such as M3GNet has applications beyond crystal struc-
ture relaxation and stability predictions. For instance, a common appli-
cation of IAPs is in molecular dynamics simulations to obtain transport 
properties such as diffusivity and ionic conductivity. An example of a 
M3GNet application is in Supplementary Fig. 12 for Li3YCl6. Training an 
IAP for complex multicomponent systems such as Li3YCl6 is typically 
a highly involved process35, whereas the M3GNet IAP can be univer-
sally applied to any material without further retraining. For example, 
M3GNet molecular dynamics calculations could be applied to a wide 
range of lithium-containing compounds to identify potential lithium 
superionic conductors (Supplementary Fig. 13). Furthermore, the 
M3GNet IAP could also serve as a surrogate model in lieu of DFT with 
other structural exploration techniques (for example, evolutionary 
algorithms such as USPEX36 and CALYPSO37, or generative models such 
as CDVAE38) to generate more diverse and unconstrained candidates.

It should be noted that the current M3GNet IAP reported in this 
work is the best that can be obtained at present with the available data. 
Further improvements in accuracy can be achieved through several 
efforts. First, the training data for the M3GNet IAP come from DFT-
relaxation calculations in the Materials Project, which were performed 
with less stringent convergence criteria such as a lower energy cut-off 
and sparser k-point grids. For IAP development, the best practice is 
to obtain accurate energies, forces and stresses via single-point, well-
converged DFT calculations for training data. Building such a database 
is an extensive effort that is planned for future developments in the 
Materials Project. Second, active learning strategies (for instance, 
by using the DFT relaxation data from the M3GNet-predicted stable 
crystals in a feedback loop) can be used to systematically improve the 
M3GNet IAP, especially in underexplored chemical spaces with the 
greatest potential for materials discoveries. Nevertheless, about 1.8 
million of the 31 million candidates were predicted to be potentially 
stable or meta-stable by M3GNet against materials in the Materials 
Project, which already expands the potential exploration pool by an 
order of magnitude over the ~140,000 crystals in the Materials Project 
database today. We shall note that the potentially stable materials will 
need to be further verified with DFT calculations and experimental syn-
theses. The model uncertainty will also play a role in further decreasing 
the number of true discoveries. Systematic methods for quantifying 
uncertainty are likely to further increase model fidelity.

b
100

80

60

C
um

ul
at

iv
e 

(%
)

40

20

0

100

80

60
C

um
ul

at
iv

e 
(%

)

40

20

M3GNet-relaxed
Initial M3GNet-relaxed

DFT-relaxed

Initial

0.019

0.071

0.548

0.024

0.060

0.066

0.009, 0.010

0.026, 0.028

0.072, 0.084

0.020

0.006

0.222

10–3 10–2

|∆V/V|
10–1 100 10–4 10–2 100

|E –Egs| (eV per atom)
10–4

0

a

Fig. 4 | Relaxation of crystal structures with M3GNet. a, Distribution of the 
absolute percentage error in volumes of M3GNet-relaxed structures relative to 
DFT-relaxed structures. b, The differences between M3GNet-predicted energies 
( ̂E) and ground-state energies (Egs) using the initial M3GNet- and DFT-relaxed 

structures; Egs is defined as the DFT energy of the DFT-relaxed crystal. The 
horizontal dashed lines mark the 50th, 80th and 95th percentiles of the 
distributions (from the bottom to the top, respectively), and the corresponding 
x-axis values are annotated.

http://www.nature.com/natcomputsci


Nature Computational Science | Volume 2 | November 2022 | 718–728 724

Article https://doi.org/10.1038/s43588-022-00349-3

Finally, the M3GNet framework is not limited to crystalline IAPs 
or even IAPs in general. The M3GNet formalism without lattice inputs 
and stress outputs is naturally suited for molecular force fields. When 
benchmarked on MD17 and MD17-CCSD(T) molecular force-field data 
(Supplementary Tables 4 and 5)39–41, the M3GNet models were found 
to be more accurate than the embedded atom neural network force 
field42, and to perform comparably with the state-of-the-art message-
passing networks and equivariant neural network models. Moreover, 
by changing the readout section from summed atomic energy as in 
Fig. 1 to intensive property readout, the M3GNet framework can be 
used to develop surrogate models for property prediction. We trained 
M3GNet models on the Matbench materials data covering nine general 
crystal materials properties (Supplementary Table 3)33. In all cases, the 
M3GNet models achieved excellent accuracies.

Methods
Data source
The Materials Project performs a sequence of two relaxation calcula-
tions19 with the PBE43 generalized gradient approximation (GGA) func-
tional or the GGA + U method44 for every unique input crystal, typically 
obtained from an experimental database such as the Inorganic Crystal 
Structure Database45. Our initial dataset comprises a sampling of the 
energies, forces and stresses from the first and middle ionic steps of 
the first relaxation and the last step of the second relaxation for calcu-
lations in the Materials Project database that contains GGA Structure 

Optimization or GGA + U Structure Optimization task types as of 8 
February 2021. The snapshots that have a final energy per atom greater 
than 50 eV per atom or atom distance less than 0.5 Å were excluded as 
those tend to be the result of errors in the initial input structure.

This dataset is then split into the training, validation and test data 
in the ratio of 90%, 5% and 5%, respectively, according to materials not 
data points. Three independent data splits were performed.

Materials discovery methods
To generate initial materials candidates, combinatorial isovalent ionic 
substitutions based on the common oxidation states of non-noble-
gas element were performed on 5,283 binary, ternary and quaternary 
structural prototypes in the 2019 version of the ICSD45 database. Only 
prototypes with less than 51 atoms were selected for computational 
speed considerations. Further filtering was performed to exclude struc-
tures with non-integer or zero-charged atoms. A total of 31,664,858 
hypothetical materials candidates were generated, more than 200 
times the total number of unique crystals in the Materials Project today. 
The candidate space contains 294,643 chemical systems, whereas the 
Materials Project has only about 47,000 chemical systems. This repre-
sents a quantity and chemical diversity of materials that is inaccessible 
using current DFT or other IAP implementations.

All structures were relaxed using the M3GNet model and their 
signed energy distance to the Materials Project convex hull were calcu-
lated using the M3GNet IAP-predicted energy (Ehull-m). We acknowledge 
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that some of the generated structures may compete with each other 
for stability; however, to avoid introducing additional uncertainties 
into the Ehull-m predictions, we have elected to compute Ehull-m relative 
to ground-truth DFT energies in the Materials Project as opposed to 
the higher uncertainty M3GNet-computed energies. A zero or nega-
tive Ehull means that the material is predicted to be potentially stable 
compared to known materials in MP. In total, 1,849,096 materials have 
Ehull-m less than 0.001 eV per atom. We then excluded materials that 
have non-metal ions in multiple valence states, for example, materials 
containing Br+ and Br− at the same time and so on. It is well-known that 
PBE overbinds single-element molecules such as O2, S8, Cl2 and so on, 
and negative anion energy corrections are applied to ionic compounds 
in Materials Project to offset such errors.46 However the corrections are 
based mostly on composition, which may artificially overstabilize mate-
rials with multivalence non-metal ions. We have developed a search-
able database for the generated hypothetical structures and their 
corresponding M3GNet-predicted properties at http://matterverse.ai.

Model construction
Neural network definition. If we denote one layer of the perceptron 
model as

ℒk
g ∶ x ↦ g𝒢Wkx + bk) (1)

then the K-layer MLP can be expressed as

ξK𝒢x) 𝒢 𝒢ℒK
g ∘ ℒK−1

g ∘ ...ℒ1g)𝒢x) (2)

The K-layer gated MLP becomes

ϕK𝒢x) 𝒢 𝒢𝒢ℒK
g ∘ ℒK−1

g ∘ ...ℒ1g)𝒢x)) ⊙ 𝒢𝒢ℒK
σ ∘ ℒK−1

g ∘ ...ℒ1g)𝒢x)) (3)

where ℒK
σ 𝒢x) replaces the activation function g(x) of ℒK

g 𝒢x) to sigmoid 
function σ(x), and ⊙ denotes the element-wise product. The gated MLP 
comprises the normal MLP before ⊙ and the gate network after ⊙.

Model architecture. The neighborhood of atom i is denoted as 𝒩𝒩i. We 
consider all other bonds emanating from atom i when calculating the 
bond interaction of eij. To incorporate n-body interactions, each eij is 
updated using all distinct combinations of n − 2 neighbors in 𝒩𝒩i exclud-
ing atom j (that is, 𝒩𝒩i/j), denoted generally as follows:

ẽij 𝒢 ∑
k1 ,k2 ,...,kn−2∈𝒩𝒩i/j
k1 !=k2 !=...kn−2

ϕn𝒢eij𝒢 rij𝒢 vj𝒢 rik1 𝒢 rik2 𝒢 ...𝒢 rikn−2 𝒢 vk1 𝒢 vk2 𝒢 ...𝒢 vkn−2 ) (4)

where ϕn is the update function and rik is the vector pointing from atoms 
i to k. In practice, this n-body information exchange involves the calcula-
tion of distances, angles, dihedral angles, improper angles and so on, which 
escalates combinatorially with the order n as (Mi − 1)!/(Mi − n + 1)!, where 
Mi is the number of neighbors in 𝒩𝒩i. We will denote this materials graph 
with an n-body interactions neural network as MnGNet. In this work, we 
will focus on the incorporation of three-body interactions only (M3GNet).

Let θjik denote the angle between bonds eij and eik. Here we expand 
the three-body angular interactions using an efficient complete and 
orthogonal spherical Bessel function and spherical harmonics basis 
set, as proposed by Klicpera and colleagues11. The bond update equa-
tion can then be rewritten as:

ẽij 𝒢 ∑
k
jl𝒢zln

rik
rc
)Y0l 𝒢θjik) ⊙ σ𝒢Wvvk + bv)fc𝒢rij)fc𝒢rik) (5)

e′ij 𝒢 eij + g𝒢W̃2ẽij + b̃2) ⊙ σ𝒢W̃1ẽij + b̃1) (6)

where W and b are learnable weights from the network; jl is the  
spherical Bessel function with the roots at zln, i.e., jl(zln) = 0; Y0l  is the  

spherical harmonics function; σ is the sigmoid activation function; 
fc𝒢r) 𝒢 1 − 6𝒢r/rc)

5 + 15𝒢r/rc)
4 − 10𝒢r/rc)

3 is the cut-off function ensuring that 
the functions vanished smoothly at the neighbor boundary47; g(x) = xσ(x) 
is the nonlinear activation function48; and ẽij is a vector of length nmaxlmax, 
expanded by indices l = 0, 1, ... , lmax − 1 and n = 0, 1, ... , nmax − 1.

Following the n-body interaction update, several graph convo-
lution steps are carried out sequentially to update the bond, atom 
and—optionally—the state information, as follows:

e′ij 𝒢 eij + ϕe𝒢vi ⊕ vj ⊕ eij ⊕ u)W0
e e

0
ij (7)

v′i 𝒢 vi +∑
j
ϕ′

e𝒢vi ⊕ vj ⊕ e′ij ⊕ u)W0′
e e0ij (8)

u′ 𝒢 g𝒢Wu
2g𝒢W

u
1 𝒢
1
Nv

Nv

∑
i
vi ⊕ u) + b

u
1 ) + b

u
2) (9)

where ϕe(x) and ϕ′
e𝒢x) are gated MLPs, as in equation (3); ⊕ is the con-

catenation operator; Nv is the number of atoms; and e0ij represents the 
distance-expanded basis functions with the target values, and the first 
and second derivatives smoothly going towards zero at the cut-off 
boundary (see Methods). Such a design ensures that the target values 
and their derivatives up to second order change smoothly with changes 
in the number of bonds; u inputs and updates are optional to the models 
as not all structures or models have state attributes.

Materials graphs were constructed using a radial cut-off of 5 Å. For 
computational efficiency considerations, the three-body interactions 
were limited to within a cut-off of 4 Å. The graph featurizer converts 
the atomic number into embeddings of dimension 64. The bond dis-
tances were expanded using the continuous and smooth basis function 
proposed by Kocer et al.49, which ensures that the first and second 
derivatives vanish at the cut-off radius.

hm𝒢r) 𝒢
1

√dm
[fm𝒢r) +√

em
dm−1

hm−1𝒢r)] (10)

where

dm 𝒢 1 − em
dm−1

(11)

em 𝒢 m2𝒢m + 2)2

4𝒢m + 1)4 + 1
(12)

fm𝒢r) 𝒢 𝒢−1)m √2𝜋𝜋

r3/2c

(m+1)(m+2)

√(m+1)2+(m+2)2

(sinc (r (m+1)𝜋𝜋
rc

) + sinc (r (m+2)𝜋𝜋
rc

))
(13)

sinc𝒢x) 𝒢 sin x
x (14)

e0ij is a vector formed by m basis functions of h(r).

e0ij 𝒢rij) 𝒢 𝒢h1𝒢rij)𝒢h2𝒢rij)𝒢 ...𝒢hm𝒢rij)] (15)

In this work, we used three basis functions for the pair distance 
expansion.

The main blocks consist of three three-body information exchange 
and graph convolutions (N = 3 in Fig. 1). By default, the values of W and 
b in equations (5–9) give output dimensions of 64. Each gated MLP 
(ϕe(x) and ϕ′

e𝒢x) in equations (7) and (8)) have two layers with 64 neurons 
in each layer.
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For the prediction of extensive properties such as total energies, 
a three-layer gated MLP (equation (3)) was used on the atom attributes 
after the graph convolution and sum the outputs as the final predic-
tion, that is,

pext 𝒢 ∑
i
ϕ3𝒢vi) (16)

The gated MLP ϕ3(x) operating on node attributes vi has a layer neuron 
configuration of [64, 64, 1] and no activation in the last layer of the 
normal MLP part.

For the prediction of intensive properties, the readout step was 
performed as follows by including optional state information u after 
the main blocks.

pint 𝒢 ξ3𝒢∑
i
wiξ2𝒢vi) ⊕ u) (17)

with weights wi summing to 1 and defined as

wi 𝒢
ξ′3𝒢vi)
∑
i
ξ′3𝒢vi)

(18)

ξ3 and ξ′3 have neuron configurations of [64, 64, 1] to ensure the output 
is scalar. There is no activation in the final layer of the MLP for regres-
sion targets, whereas, for classification targets, the last layer activation 
is chosen as the sigmoid function.

In the training of MPF.2021.2.8 data, the M3GNet model comprises 
three main blocks with 227,549 learnable weights.

Model training
The Adam optimizer50 was used with an initial learning rate of 0.001, 
with a cosine decay to 1% of the original value in 100 epochs. During 
optimization, the validation metric values were used to monitor the 
model convergence, and training was stopped if the validation metric 
did not improve for 200 epochs. For the elemental IAP training, the loss 
function was the mean squared error. For other properties, we used the 
Huber loss function51 with δ set to 0.01. For universal IAP training, the 
total loss function includes the loss for energy, forces and—in inorganic 
compounds—the stresses. A batch size of 32 was used in model training.

L 𝒢 ℓ𝒢e𝒢 eDFT) +wfℓ𝒢f𝒢 fDFT) +wσℓ𝒢𝜎𝜎𝒢 𝜎𝜎DFT) (19)

where ℓ is the Huber loss function, e is energy per atom and w are the 
scalar weights. The DFT subscripts indicate data from DFT.

Before M3GNet IAP fitting, we fit the elemental reference ener-
gies using linear regression of the total energies. We first featurize a 
composition into a vector c = [c1, c2, c3, ... , c89] where ci is the number 
of atoms in the composition with the atomic number i. The composi-
tion feature vector c is mapped to the total energy of the material E via 
E = ∑iciEi, where Ei is the reference energy for an element with atomic 
number i that can be obtained by linear regression of the training data. 
The elemental reference energies were then subtracted from the total 
energies to improve M3GNet model training stability. We set wf = 1 and 
wσ = 0.1 during training the MPF.2021.2.8 data.

Software implementation
The M3GNet framework was implemented using the TensorFlow52 pack-
age and currently runs on TensorFlow v.2.9.1. All crystal and molecu-
lar structure processing were performed using the Python Materials 
Genomics (pymatgen)16 v.2020.12.31. The structural optimization 
was performed using the FIRE53 algorithm implemented in the atomic 
simulation environment (ASE) v.3.22.0 (ref. 54). The molecular dynamics 
simulations were performed in the NVT ensemble using ASE (ref. 54).  
Phonon calculations were performed using the Phonopy package 

v.2.10.0 (ref. 55). Data analysis and visualization were performed using 
scikit-learn v.0.24.2 (ref. 56), statsmodels v.0.12.2 (ref. 57), matplotlib 
v.3.3.0 (ref. 58), seaborn v.0.11.2 (ref. 59) and pandas v.1.3.1 (ref. 60).

Data availability
The training data for the universal IAP are available at https://doi.
org/10.6084/m9.figshare.19470599 (ref. 61). The phonon dispersion 
curves of 328 dynamically stable materials are available at https://doi.
org/10.6084/m9.figshare.20217212 (ref. 62). The ICSD database used in 
this study is a commercial product and cannot be shared. All generated 
hypothetical compounds and their corresponding M3GNet predictions 
are provided at http://matterverse.ai. Each material can be accessed via 
a detail page at https://matterverse.ai/details/mv-id, where id ranges 
from 0 to 31,664,854. Source Data are provided with this paper.

Code availability
The source code for M3GNet is available at https://github.com/materi-
alsvirtuallab/m3gnet and https://doi.org/10.5281/zenodo.7141391 (ref. 63).
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Extended Data Fig. 1 | M3GNet-calculated phonon dispersion curves of four new materials predicted to be thermodynamically and dynamically stable.  
a, Sr6Sc2Al4O15; b, K2Li3AlO4; c, KMN4V2O12; d, MnCd(GAO2)4.
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