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Abstract

Graph networks are a new machine learning (ML) paradigm that supports both

relational reasoning and combinatorial generalization. Here, we develop, for the first

time, universal MatErials Graph Network (MEGNet) models for accurate property

prediction in both molecules and crystals. We demonstrate that our MEGNet mod-

els significantly outperform prior ML models in 11 out of 13 properties of the QM9

molecule data set. Furthermore, a single-task unified MEGNet model can accurately

predict the internal energy at 0 K and room temperature, enthalpy and Gibbs free

energy, with temperature, pressure and entropy being global state inputs. Similarly,

we show that MEGNet models trained on ∼ 60, 000 crystals in the Materials Project

substantially outperform prior ML models in the prediction of the formation energies,

band gaps and elastic moduli of crystals, achieving better than DFT accuracy over

a much larger data set. Such MEGNet models are highly interpretable, and well-

established periodic chemical trends can be extracted from the elemental embeddings.

Finally, we demonstrate the transfer learning of elemental embeddings from a property

model trained on a larger data set (formation energies) to accelerate the training of

property models with smaller amounts of data (band gaps and elastic moduli).
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Introduction

Machine learning (ML)1,2 has emerged as a powerful new tool in materials science,3–13 driven

in part by the advent of large materials data sets from high-throughput electronic structure

calculations14–17 and/or combinatorial experiments.18,19 Among its many applications, the

development of fast, surrogate ML models for property prediction has arguably received the

most interest for its potential in accelerating materials design20,21 as well as accessing larger

length/time scales at near-quantum accuracy.11,22–27

The key input to any ML model is a description of the material, which must satisfy the

necessary rotational, translational and permutational invariances as well as uniqueness. For

molecules, graph-based representations28 are a natural choice. Recently, Faber et al. 29 bench-

marked different features in combination with models extensively on the QM9 data set.30

They showed that the graph-based deep learning models31,32 generally outperform classical

ML models with various features. Furthermore, graph-based models are generally less sen-

sitive to the choice of atomic descriptors, unlike traditional feature engineering-based ML

models. For example, Schütt et al.10,33 achieved state-of-the-art performance on molecules

using only the atomic number and atom coordinates in a graph-based neural network model.

Gilmer et al. 34 later proposed the message passing neural network (MPNN) framework that

includes the existing graph models with differences only in their update functions.

Unlike molecules, descriptions of crystals must account for lattice periodicity and addi-

tional space group symmetries. In the crystal graph convolutional neural networks (CGCNN)

proposed by Xie and Grossman 9 , each crystal is represented by a crystal graph, and invari-

ance with respect to permutation of atomic indices and unit cell choice are achieved through

convolution and pooling layers. They demonstrated excellent prediction performance on a

broad array of properties, including formation energy, band gap, Fermi energy and elastic

properties.

Despite these successes, current ML models still suffer from several limitations. First,

it is evident that most ML models are designed on either molecules or crystals. A notable
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exception is the recently reported SchNet,33 which has been tested on both molecules and

crystals, although its performance evaluation on crystals is limited to formation energies

only. Second, current models lack a description of global state (e.g., temperature), which

are necessary for predicting state-dependent properties such as the free energy. Last but not

least, data availability remain a critical bottleneck for training high-performing models for

some properties. For example, while there are ∼ 69, 000 computed formation energies in the

Materials Project,14 there are only ∼ 6, 000 computed elastic constants.

In this work, we aim to address all these limitations. We propose graph networks35

with global state attributes as a general, composable framework for property prediction

in materials, i.e., both molecules and crystals. It should be noted that graph networks

are fundamentally different from the previously-described graph convolutional neural net-

works,9 despite the superficial similarity in names. We will demonstrate that our MatErials

Graph Network (MEGNet) models outperform prior ML models in the prediction of multiple

properties on the ∼ 131, 000 molecules in the QM9 data set30 and ∼ 69,000 crystals in the

Materials Project.14 We have also constructed a unified molecule free energy MEGNet model

by incorporating state variables such as temperature, pressure and entropy as global state

inputs. Finally, we demonstrate how interpretable chemical trends can be extracted from

elemental embeddings trained on a large data set, and these elemental embeddings can be

used to accelerate the training and improve the performance of models with smaller data

quantities.

Methods

MEGNet Formalism

Graph networks were recently proposed by Battaglia et al. 35 as a general, modular framework

for ML that supports both relational reasoning and combinatorial generalization. Indeed,

graph networks can be viewed as a superset of the previous graph-based neural networks,
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though the use of neural networks as function approximators is not a prerequisite. Here, we

will outline the implementation of MEGNet models for molecules and crystals, with appro-

priate modifications for the two different material classes explicitly described. Throughout

this work, the term “materials” will be used generically to encompass molecules to crystals,

while the more precise terms “molecules” and “crystals” will be used to refer to collections

of atoms without and with lattice periodicity, respectively.

Bond attributes

State attributes

Atom attributes

2. Update atom 3. Update state

New atom attributes

New bond attributes

New state attributes

MEGNet update steps

Outputs

MEGNet

1. Update bond

Figure 1: Overview of a MEGNet module. The initial graph is represented by the set of
atomic attributes V = {vi}i=1:Nv , bond attributes E = {(ek, rk, sk)}k=1:Ne and global state
attributes u. In the first update step, the bond attributes are updated. Information flows
from atoms that form the bond, the state attributes and the previous bond attribute to the
new bond attributes. Similarly, the second and third steps update the atomic and global
state attributes, respectively, by information flow among all three attributes. The final result
is a new graph representation.

Let V , E and u denote the atomic (node/vertex), bond (edge) and global state attributes

respectively. For molecules, bond information (e.g., bond existence, bond order, etc.) is

typically provided as part of the input definition. For crystals, a bond is loosely defined

between atoms with distance less than certain cut-off. Following the notation of Battaglia
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et al. 35 , V is a set of vi, which is an atomic attribute vector for atom i in a system of N v

atoms. E = {(ek, rk, sk)}k=1:Ne are the bonds, where ek is the bond attribute vector for bond

k, rk and sk are the atom indices forming bond k, and N e is the total number of bonds.

Finally, u is a global state vector storing the molecule/crystal-level or state attributes (e.g.,

the temperature of the system).

A graph network module (Figure 1) contains a series of update operations that map an

input graph G = (E, V,u) to an output graph G′ = (E ′, V ′,u′). First, the attributes of each

bond (ek, rk, sk) are updated using attributes from itself, its connecting atoms (with indices

rk and sk) and the global state vector u, as follows:

e′k = φe

(
vsk

⊕
vrk

⊕
ek

⊕
u
)

(1)

where φe is the bond update function and
⊕

is the concatenation operator. Next, the

attributes of each atom vi are updated using attributes from itself, the bonds connecting to

it, and the global state vector u, as follows:

v̄e
i =

1

N e
i

Ne
i∑

k=1

{e′k}rk=i (2)

v′i = φv

(
v̄e
i

⊕
vi

⊕
u
)

(3)

where N e
i is the number of bonds connected to atom i, and φv is the atom update function.

The aggregation step (Equation 2) acts as a local pooling operation that takes the average

of bonds that connect to the atom i.

The first two update steps contain localized convolution operations that rely on the atom-

bond connectivity. One can imagine that if more graph network modules are stacked, atoms

and bonds will be able to “see” longer distances, and hence, longer range interactions can

be incorporated even if the initial distance cut-off is small to reduce the computational task.

Finally, the global state attributes u are updated using information from itself and all
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atoms and bonds, as follows:

ūe =
1

N e

Ne∑
k=1

{e′k} (4)

ūv =
1

N v

Nv∑
i=1

{v′i} (5)

u′ = φu

(
ūe
⊕

ūv
⊕

u
)

(6)

where φu is the global state update function. In addition to providing a portal to input

state attributes (e.g., temperature), u also acts as the global information placeholder for

information exchange on larger scales.

The choice of the update functions φe, φv and φu largely determines the model perfor-

mance in real tasks. In this work, we choose the φs to be multi-layer perceptrons with two

hidden layers (Equation 7), given their ability to be universal approximators for non-linear

functions.36

φ(x) = W3(ζ(W2(ζ(W1x + b1)) + b2)) + b3 (7)

where ζ is the modified softplus function10 acting as nonlinear activator, Ws are the kernel

weights and bs are the biases. Note that the weights for atom, bond and state updates

are different. Each fully-connected layer will be referred as a “dense” layer using keras37

terminology.

To increase model flexibility, two dense layers are added before each MEGNet module to

pre-process the input. This approach has been found to increase model accuracy. We define

the combination of the two dense layers with a MEGNet module as a MEGNet block, as

shown in Figure 2. The block also contains residual net-like38 skip connections to enable

deeper model training and reduce over-fitting. Multiple MEGNet blocks can stacked to

make more expressive models. In the final step, a readout operation reduces the output
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graph to a scalar or vector. In this work, the order-invariant set2set model39 that embeds a

set of vectors into one vector is applied on both atomic and bond attributes sets. After the

readout, the atomic, bond and state vectors are concatenated and passed through multi-layer

perceptrons to generate the final output. The overall model architecture is shown in Figure

2. If the atom features are only the integer atomic numbers, an embedding layer is added

after the atom inputs V .
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Figure 2: Architecture for the MEGNet model. Each model is formed by stacking MEGNet
blocks. In the readout stage, a set2set neural network is used to reduce sets of atomic and
bond vectors into a single vector. The numbers in brackets are the number of hidden neural
units for each layer. Each MEGNet block contains a MEGNet layer as well as two dense
layers. The “Add” arrows are skip-connections to enable deep model training.

Atomic, Bond and State Attributes

Table 1 summarizes the full set of atomic, bond and state attributes used as inputs to the

MEGNet models. The molecule attributes are similar to the ones used in the benchmarking

work by Faber et al. 29 . For crystals, only the atomic number and spatial distance are used

as atomic and bond attributes, respectively.

7



Table 1: Atomic, bond and state attributes used in the graph network models.

System Level Attributes name Description
Molecule Atom Atom type H, C, O, N, F (one-hot).

Chirality R or S (one-hot or null).
Ring sizes For each ring size (3-8), the number of rings

that include this atom. If atom is not in a
ring, this field is null.

Hybridization sp, sp2, sp3 (one-hot or null).
Acceptor Whether the atom is an electron acceptor (bi-

nary)
Donor Whether the atom donates electrons (binary)
Aromatic Whether the atom belongs to an aromatic

ring. (binary)
Bond Bond type Single, double, triple, or aromatic (one-hot or

null).
Same ring Whether the atoms in the bond are in the same

ring (binary).
Graph distance Shortest graph distance between atoms (1-7).
Spatial distance Expanded distance with Gaussian basis

exp(−(r − r0)2/σ2) centered at 20 points lin-
early placed between 0 and 4 and σ = 0.5.

State Average atomic weight Molecular weight divided by number of atoms
(float).

Bonds per atom Average number of bonds per atom (float).
Crystal Atom Z The atomic number of element (1-94)

Bond Spatial distance Expanded distance with Gaussian basis
exp(−(r− r0)2/σ2) centered at 100 points lin-
early placed between 0 and 5 and σ = 0.5.

State Two zeros Placeholder for global information exchange.
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Data Collections

The molecule data set used in this work is the QM9 data set30 processed by Faber et al. 29

It contains the B3LYP/6-31G(2df,p)-level DFT calculation results on 130,462 small organic

molecules containing up to 9 heavy atoms.

The crystal data set comprises the DFT-computed energies and band gaps of 69,640 crys-

tals from the Materials Project14 obtained via the Python Materials Genomics (pymatgen)40

interface to the Materials Application Programming Interface (API)41 on June 1, 2018. We

will designate this as the MP-crystals-2018.6.1 data set to facilitate future benchmarking

and comparisons as data in the Materials Project is constantly being updated. The crystal

graphs were constructed using a radius cut-off of 4 Å. Using this cut-off, 69,239 crystals do

not form isolated atoms and are used in the models. All crystals were used for the formation

energy model and the metal against non-metals classifier, while a subset of 45,901 crystals

with finite band gap was used for the band gap regression. A subset of 5830 structures have

elasticity data that do not have calculation warnings and will be used for elasticity models.

Model Construction and Training

A customized Python version of MEGNet was developed using the keras API37 with the

tensorflow backend.42 Since molecules and crystals do not have the same number of atoms,

we assemble batches of molecules/crystals into a single graph with multiple targets to enable

batch training. The Adam optimizer43 was used with an initial learning rate of 0.001, which

is reduced to 0.0001 during later epochs for tighter convergence.

Each data set is divided into three parts - training, validation and test. For the molecule

models, 90% of the data set was used for training and the remaining were divided equally

between validation and test. For the crystal formation energy models, 60,000 crystals were

used for training and the remaining were divided equally between validation and test for

direct comparison to the work of Schütt et al. 33 . For the band gap classification models

and elastic moduli models, an 80:10:10 split was applied. All models were trained on the
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training set, and the configuration and hyperparameters with the lowest validation error

were selected. Finally, the test error is calculated. In crystals, the embedding dimension is

set to 16. The elemental embeddings trained on the formation energy using one MEGNet

block was transferred to the band gap regression model and kept fixed. We use the same

architecture featuring three MEGNet blocks in the models for crystals.

Data and Model Availability

To ensure reproducibility of the results, the MP-crystals-2018.6.1 data set used in this work

have been made available as a JavaScript Object Notation file at https://figshare.com/

articles/Graphs_of_materials_project/7451351. The graph network modules and over-

all models have also been released as open-source code in a Github repository at https:

//github.com/materialsvirtuallab/megnet.

Results

Performance on QM9 Molecules

Table 2 compares the mean absolute errors (MAEs) of 13 properties for the different models.

It can be seen that the MEGNet models using the full set of attributes (“Full” column in

Table 2) outperforms the state-of-art SchNet33 and MPNN enn-s2s models34 in all but two

of the properties - the norm of dipole moment µ and the electronic spatial extent R2. Out

of the 13 properties, only the errors on zero-point energy (ZPVE) (1.33 meV) and band

gap (∆ε) (0.062 eV) exceed the thresholds for chemical accuracy. The errors of various

properties follow Gaussian distributions, as shown in Figure S1.

We note that the atomic and bond attributes in Table 1 encode redundant information.

For example, the bond type can usually be inferred from the bonding atoms and the spatial

distance. We therefore developed “simple” MEGNet models that utilize only the atomic

number and spatial distance as the atomic and bond attributes, respectively. From Table 2,
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Table 2: Comparison of mean absolute errors (MAEs) of 13 properties in the QM9 data
set for different models. The “Benchmark” column refers to the best model in the work
by Faber et al. 29 , and the “Target” column refers to the widely-accepted thresholds for
“chemical accuracy”.29

Property Units MEGNet-Full* MEGNet-Simple** Schnet33 enn-s2s34 Benchmark29 Target
(This Work) (This Work)

εHOMO eV 0.037 0.043 0.041 0.043 0.055 a 0.043
εLUMO eV 0.031 0.044 0.034 0.037 0.064 a 0.043
∆ε eV 0.062 0.066 0.063 0.069 0.087 a 0.043
ZPVE meV 1.33 1.43 1.7 1.5 1.9 c 1.2
µ D 0.053 0.050 0.033 0.030 0.101 a 0.1

α bohr3 0.081 0.081 0.235 0.092 0.161 b 0.1〈
R2
〉

bohr2 0.606 0.302 0.073 0.180 - 1.2
U0 eV 0.009 0.012 0.014 0.019 0.025 c 0.043
U eV 0.009 0.013 0.019 0.019 - 0.043
H eV 0.010 0.012 0.014 0.017 - 0.043
G eV 0.011 0.012 0.014 0.019 - 0.043
Cv cal(molK)−1 0.028 0.029 0.033 0.040 0.044 c 0.05
ω1 cm−1 1.02 1.18 - 1.9 2.71d 10

εHOMO: highest occupied molecular orbital; εLUMO: lowest unoccupied molecular orbital; ∆ε: energy gap;
ZPVE: zero point vibrational energy; µ: dipole moment; α: isotropic polarizability;

〈
R2
〉
: electronic

spatial extent; U0: internal energy at 0 K; U : internal energy at 298 K; H: enthalpy at 298 K; G: Gibbs
free energy at 298 K; Cv: heat capacity at 298 K; ω1: highest vibrational frequency.
* Full MEGNet models using all listed features in Table 1. The optimized models for ZPVE,

〈
R2
〉
, µ and

ω1 contain five, five, three and one MEGNet blocks, respectively, while the optimized models for all other
properties uses two MEGNet blocks.
** Simple MEGNet models using only the atomic number as atomic feature, expanded distance as bond
features and no dummy state features. All models contain three MEGNet blocks.
a Graph convolution with molecular graph feature.31
b Gated-graph neural network with molecular graph feature.32
c Kernel-ridge regression with histogram of distance, angles and dihedrals (HDAD) features.
d Random forest model with bonds angles machine learning (BAML) feature.
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we may observe that these simple MEGNet models achieve largely similar performance as

the full models, with only slightly higher MAEs that are within chemical accuracy and still

outperforming prior state-of-the-art models in 8 of the 13 target properties. Surprisingly,

the simple MEGNet models also achieve lower MAEs than the full MEGNet models on the

norm of dipole moment µ and the electronic spatial extent R2, the two properties for which

the MEGNet models under-perform relative to the SchNet and enn-s2s models. It should

be noted, however, that the convergence of the “simple” models are slower than the “full”

models for certain properties (e.g., µ, ZV PE). This may be due to the models having to

learn more complex relationships between the inputs and the target properties.

Unified Molecule Free Energy Model

To achieve the results presented in Table 2, one MEGNet model was developed for each

target, similar to previous works.33,34 However, this approach is extremely inefficient when

multiple targets are related by a physical relationship and should share similar features. For

instance, the internal energy at 0K (U0) and room temperature (U), enthalpy (H = U+PV )

and Gibbs free energy (G = U +PV −TS) are all energy quantities that are related to each

other by temperature (T ), pressure (P ), volume (V ) and entropy (S). To illustrate this

concept, we have developed a combined free energy model for U0, U , H and G for the

QM9 data set by incorporating the temperature, pressure (binary) and entropy (binary) as

additional global state attributes in u, i.e., (0, 0, 0), (298, 0, 0), (298, 1, 0) and (298, 1, 1)

for U0, U , H and G, respectively. Using the same architecture, this combined free energy

model achieves an overall MAE of 0.010 eV for the four targets, which is comparable to the

results obtained using the separate MEGNet models for each target.

In principle, the combined free energy model should be able to predict free energies at

any temperature given sufficient training data. Indeed, the predicted U at 100 K and 200 K

match well with our DFT calculations (see Figure S2), even though these data points were not

included in the training data. However, the predicted H and G at the same temperatures
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show large deviations from the DFT results. We hypothesize that this is due to the fact

that only one temperature data for these quantities exist in the training data and that the

addition of H and G data at multiple temperatures into the training data would improve

the performance of the unified free energy MEGNet model.

Performance on Materials Project Crystals

Table 3: Comparison of the MAEs in the formation energy Ef , band gap Eg, bulk modu-
lus KV RH , shear modulus GV RH and and metal/non-metal classification between MEGNet
models and prior works on the Materials Project data set. The number of structures in the
training data is in parentheses.

Units MEGNet SchNet33 CGCNN9

Elements 89 89 87
Ef eV atom−1 0.028 (60000) 0.035 (60000) 0.039 (28046)
Eg eV 0.32 (36720) - 0.388 (16485)
KV RH log10 (GPa) 0.049 (4664) - 0.054 (2041)
GV RH log10 (GPa) 0.079 (4664) - 0.087 (2041)
Metal classifier - 80.5% (55391) - 80% (28046)
Non-metal classifier - 90.2% (55391) - 95% (28046)

a b c

-1

Figure 3: Performance of MEGNet models on the Materials Project data set. (a) Parity
plots for the formation energy of the training and test data sets. (b) Plot of average MAE
for each element against number of training structures containing that element. (c) Re-
ceiver operating characteristics (ROC) curve for test data for MEGNet classifier trained to
distinguish metals against non-metals.

Table 3 compares the performance of the MEGNet models against the SchNet33 and
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CGCNN models.9 We may observe that the MEGNet models outperform both the SchNet

and CGCNN models in the MAEs of the formation energies Ef , band gap Eg, bulk modulus

KV RH and shear modulus GV RH . We also see a slight improvement in the classification

accuracy of metals over the CGCNN, though this comes at the cost of decrease in accuracy

in the classification of non-metals. It should be noted that these results - especially the

prediction of Eg and the metal/non-metal classifiers - are achieved over much larger datasets

than previous works, and the prediction error in Ef , Eg, KV RH and GV RH are well within

the DFT errors in these quantities.44–48 The MEGNet models, similar to the SchNet models,

utilize only one atomic attribute (atomic number) and one bond attribute (spatial distance),

while nine attributes were used in the CGCNN model. We also found that transferring

the elemental embeddings from the Ef model, which was trained on the largest data set,

significantly accelerates the training and improves the performance of the Eg, KV RH and

GV RH models. For example, the MAEs of independently-trained model (without transfer

learning) for Eg has a higher MAE of 0.38 eV.

Figures 3a and b provide a detailed analysis of the MEGNet model performance on

Ef . The parity plot (Figure 3a) shows that the training and test data are similarly well-

distributed, and consistent model performance is achieved across the entire range of Ef . We

have performed a sensitivity analysis of our MEGNet Ef model to various hyperparameters.

Increasing the radius cut-off to 6 Å slightly increases the MAE to 0.03 eV.atom−1. Using

one or five MEGNet blocks instead of three result in MAEs of 0.033 and 0.027 eV atom−1,

respectively. Hence, we can conclude that our chosen radius cut-off of 4 Å and model

architecture comprising three MEGNet blocks are reasonably well-optimized. Figure 3b plots

the average test MAEs for each element against the number of training structure containing

that element. In general, the greater the number of training structures, the lower the MAE

for structures containing that element. Figure 3c shows the receiver operating characteristic

(ROC) curve for the metal/non-metal classifier. The overall test accuracy is 86.9%, and the

area under curve for the receiver operation conditions is 0.926.
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Discussion

It is our belief that the separation of materials into molecules and crystals is largely arbi-

trary, and a true test of any structured representation is its ability to achieve equally good

performance in property prediction in both domains. We have demonstrated that graph

networks, which provide a natural framework for representing the attributes of atoms and

the bonds between them, are universal building blocks for highly accurate prediction mod-

els. Our MEGNet models, built on graph network concepts, show significantly improved

accuracies over prior models in most properties for both molecules and crystals. Another

key advance in this work is the demonstration of the incorporation of global state variables

to build unified models for related properties. A proof of concept is shown in our unified

molecule free energy MEGNet model, which can successfully predict the internal energy

at multiple temperatures, enthalpy and Gibbs free energy with temperature, entropy and

pressure as global state variables.

Interpretability

For chemistry and materials science applications, a particularly desirable feature for any

representation is interpretability and reproduction of known chemistry intuition. To this

end, we have extracted the elemental embeddings from the MEGNet model for crystal for-

mation energy. As shown in Figure 4, the correlations between the elemental embeddings

correctly recover the trends in the periodic table of the elements. For example, the alkaline,

alkali, chalcogen, halogen, lathanoid, transition metals, post transition metals, metalloid and

actinoid show highest similarities within their groups.

Such embeddings obtained from formation energy models are particularly useful for the

development of models to predict stable new compounds. Hautier et al. 50 previously de-

veloped an ionic substitution prediction algorithm using data mining, which has been used

successfully in the discovery of several new materials.51,52 The ion similarity metric therein
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Figure 4: Pearson correlations between elemental embedding vectors. Elements are arranged
in order of increasing Mendeleev number49 for easier visualization of trends.
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is purely based on the presence of ions in a given structural prototype, a somewhat coarse-

grained description. Here, the MEGNet models implicitly incorporate the local environment

of the site and should in principle better describe the elemental properties and bonding rela-

tionships. We note that with more MEGNet blocks, the contrast of the embeddings between

atoms are weaker, as shown in Figure S3. The two-dimensional t-SNE plots53 confirm these

conclusions, as shown in Figure S4. This is because with more blocks, the environment seen

by the atom spans a larger spatial region, and the impact of geometry becomes stronger,

which obscures the chemical embeddings.

Composability

A further advantage of the graph network based approach is its modular and composable

nature. In our MEGNet architecture, a single block captures the interactions between each

atom and its immediate local environment (defined via specified bonds in the molecule models

and a radius cutoff in the crystal models). Stacking multiple blocks allows for information

flow, and hence, capturing of interactions, across larger spatial distances.

We can see this effect in the MEGNet models for the QM9 data set, where different

number of blocks are required to obtain good accuracy for different properties. For most

properties, two blocks are sufficient to achieve MAEs within chemical accuracy. However,

more blocks are necessary for the zero-point vibrational energy (five), electronic spatial

extent (five) and dipole moment (three), which suggests that it is important to capture

longer-ranged interactions for these properties. In essence, the choice of number of MEGNet

blocks for a particular property model boils down to a consideration of the range of inter-

actions necessary for accurate prediction, or simply increasingly the number of blocks until

convergence in accuracy is observed.
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Data Limitations and Transfer Learning

The critical bottleneck in building graph networks models, like all other ML models, is data

availability. For instance, we believe the inability of the unified free energy MEGNet model

to accurately predict H and G at 100 K and 200 K is largely due to the lack of training

data at those temperatures. Similarly, a general inverse relationship can be seen between the

number of training structures and the average MAE in formation energies of the crystals in

Figure 3b. Besides adding more data (which is constrained by computational cost as well as

chemistry considerations), another avenue for improvement is to use ensemble models. We

tested this hypothesis by training two independent three-block MEGNet models and used

the average as the ensemble prediction for the formation energies of the Materials Project

data set. The MAE reduces from 0.028 eV atom−1 for single MEGNet model to 0.024 eV

atom−1 for the ensemble MEGNet model.

Yet another approach to address data limitations is transfer learning, and we have demon-

strated an instructive example of how this can be applied in the case of the crystal MEGNet

models. Data quantity and quality is a practical problem for many materials properties. Us-

ing the Materials Project as an example, the formation energy data set comprises ∼ 69, 000

crystals, i.e., almost all computed crystals in the database. However, only about half of

these have non-zero band gaps. Less than 10% crystals in Materials Project have computed

elastic constants, due to the high computational effort in obtaining these properties. By

transferring the elemental embeddings, which encode the learned chemical trends from the

much larger formation energy data set, we were able to efficiently train the band gap and

elastic moduli MEGNet models and achieve significantly better performance than prior ML

models. We believe this to be a particularly effective approach that can be extended to other

materials properties with limited data availability.
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Conclusion

To conclude, we have developed materials graph network models that are universally high

performing across a broad variety of target properties for both molecules and crystals.

Graphs are a natural choice of representation for atoms and the bonds between them, and

the sequential update scheme of graph networks provide a natural approach for information

flow among atoms, bonds and global state. Furthermore, we demonstrate two advances -

incorporation of global state inputs and transfer learning of elemental embeddings - in this

work that extend these models further to state-dependent and data-limited properties. These

generalizations address several crucial limitations in the application of ML in chemistry and

materials science, and provide a robust foundation for the development of general property

models for accelerating materials discovery.
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