Room-Temperature All-solid-state Na-ion Batteries with Cl-doped Na3PS4

In collaboration with the Laboratory of Energy Storage and Conversion (LESC), we have developed a room-temperature all-solid-state rechargeable sodium-ion battery utilizing a novel Cl-doped Na3PS4 superionic conductor. The Cl-doped tetragonal Na3PS4 solid electrolyte exhibits room-temperature Na+ conductivity exceeding 1 mS/cm, and an all-solid-state TiS2/t-Na3−xPS4−xClx/Na cell utilizing this solid electrolyte can be cycled at room-temperature at…

Materials Virtual Lab Retreat 2016

The Materials Virtual Lab held its first ever retreat today. We had a great day strategizing future research directions followed by a BBQ at La Jolla Shores. We officially welcome Chi Chen, Hui Zheng, and Zhuonan Lin to the group, and congratulate Richard Tran on transiting to a graduate student!

Data-driven Methods for the Study and Design of Alkali Superionic Conductors

Our article on “Data-driven First Principles Methods for the Study and Design of Alkali Superionic Conductors” has been published in  Chemistry of Materials as part of an invited Methods and Protocols special topic. In this work, we provide a detailed exposition of the first principles techniques that can be used to design alkali superionic conductors, a…

Crystalium released

We have published the world’s largest database of surface energies and Wulff shapes, dubbed Crystalium. A collaborative effort between the Materials Virtual Lab and the Materials Project, this new open-source database can help researchers design new materials for technologies in which surfaces and interfaces play an important role, such as fuel cells, catalytic converters in…