KVOPO4: A New High Capacity Multi-electron Na‐Ion Battery Cathode

Yuh-chieh Lin and Iek-Heng Chu are proud co-authors of a recent article published in Advanced Energy Materials on KVOPO4, a novel, high capacity multi-electron cathode for Na-ion batteries. This highly collaborative work, which is part of the NorthEast Center for Chemical Energy Storage (NECCESS) demonstrates fully activated Na+ intercalation over the V3+/4+/5+ couple in a vanadyl phosphate phase for the first time, with a high practical energy density of over 600 Wh/kg, the highest yet reported for any sodium cathode material. DFT calculations (contribution from MAVRL) shows that KVOPO4 is a 3D ionic conductor with low Na+ migration energy barrier of

Electrochemical Properties of Naphthalene Diimide

Hanmei’s co-author paper with the Chen and Lipomi groups on “Understanding the Electrochemical Properties of Naphthalene Diimide: Implication for Stable and High-Rate Lithium-Ion Battery Electrodes” has just been published in Chemistry of Materials. In this work, we investigate the redox-active organic molecule, 1,4,5,8-naphthalenediimide (NDI), as a low-cost, high-abundance alternative to transition metal-based electrodes for lithium-ion batteries. Hanmei’s contribution is in using the latest SCAN functional combined with the HSE functional to identify the stable Li intercalation sites and compute the voltage profile of NDI, which are in excellent agreement with the experiments from the Chen group.