L-edge XANES database

Yiming’s paper on “Database of ab initio L-edge X-ray absorption near edge structure” has just been published in Nature Scientific Data! This work is a collaboration between the Materials Virtual Lab, the Materials Project, Alan Dozier and the groups of Prof John Rehr at the University of Washington and Prof Jordi Cabana at the University of Illinois Chicago. It is a follow-up to our earlier work on a K-edge XANES database, the L-edge XANES database provides instant access to more than 140,000 L-edge spectra for more than 22,000 structures generated using a high-throughput FEFF9 workflow. The L-edge XANES is widely used in the characterization of transition metal compounds. The data is available through the Materials Project XAS app and addresses a critical need for L-edge XANES spectra among the research community. The journal article is available at this link.

Halide Migration in Lead Halide Perovskites

Manas just published his first paper on “Correlated Octahedral Rotation and Organic Cation Reorientation Assist Halide Ion Migration in Lead Halide Perovskites” in Chemistry of Materials! Halide ion migration is one of the main contributors to instability and hysteresis in lead halide perovskite (LHP) solar cells. In this collaborative work with the Fenning group, we elucidate the effect of octahedral rotation and organic cation rotation on halide ion migration in APbBr3 (A = Cs or methylammonium/MA) LHPs. While both effects lower halide migration barriers, organic cation rotation plays a much bigger role in hybrid organic-inorganic LHPs, which can be linked to changes in H bonding during the halide migration process. We suggest that “locking” the organic cation via chemical and processing means can help mitigate halide migration-induced instability and reduced hysteresis in LHP solar cells. Check out the work at this link.