Presentations

GTC2021

Posted on

Prof Ong gave a talk on “Discovering New Materials in a Fraction of the Time with Graph Networks” at the NVIDIA GTC 2021 conference. This talk discusses our recent work on using GPU-trained multi-fidelity graph networks, together with Bayseian optimization techniques, to discover novel materials.

Presentations

Chi’s Talk on Constructing Accurate Quantitative Structure-Property Relationships via Materials Graph Networks

Posted on

Chi Chen gave a talk at nanoHub’s Hands-on Data Science and Machine Learning Training Series on how to develop MatErials Graph Network (MEGNet) models for predicting various materials properties from crystal structure. He also demonstrates how the MEGNet framework can be adapted to work with multi-fidelity data sources to improve predictions on high-value small datasets (e.g., experimental data). Extensive examples are shown using Jupyter notebooks. The video is available on the Materials Virtual Lab Youtube Channel. The megnet package used extensively in these tutorials can be found on Github.

Presentations

Yunxing’s Workshop Talk on Machine Learning Interatomic Potential Development with MAML

Posted on

Yunxing gave a talk at NanoHUB’s Hands-on Data Science and Machine Learning Training Series today on how to conveniently develop machine learning interatomic potentials (ML-IAPs) using the Materials Machine Learning (maml) library. ML-IAPs describe the potential energy surface using local environment descriptors and has been demonstrated to be able to achieve near-DFT accuracy with linear scaling with respect to the number of atoms. The recording of this talk is now available on the Materials Virtual Lab’s Youtube channel. To find out more about the maml package, check out our Github repository. You can also read Yunxing’s excellent paper benchmarking the performance and cost of various ML-IAPs to learn more.

Presentations

ASTAR Webinar on The AI Revolution in Materials Science

Posted on

Prof Ong gave a webinar talk on the AI Revolution in Materials Science for the Singapore Agency of Science Technology and Research (A*STAR). In this talk, he discussed the big challenges in materials science where AI can make a huge impact towards addressing as well as outstanding challenges and opportunities to bringing forth the AI revolution to the materials domain.