Plenary Talk at 57th Sanibel Symposium

Professor Ong recently gave a plenary talk on “Creating It from Bit – Designing Materials by Integrating Quantum Mechanics, Informatics and Computer Science” at the 57th Sanibel Symposium held on St Simon’s Island in Georgia, USA. The slides of this talk at available on SlideShare. In this talk, he discussed two emerging trends that holds…

matgenb – Getting data from the Materials Project

The Materials Virtual Lab has started matgenb, a new public repository to share example notebooks that demonstrate the utilization of open-source codes for the study of materials science. We frequently get requests (from students, postdocs, collaborators, or just general users) for example codes that demonstrate various capabilities in the open-source software we maintain and contribute to, such…

Divalent-doped NASICON with high Na+ conductivity

Our work on “Divalent-doped Na3Zr2Si2PO12 Natrium Superionic Conductor: Improving the ionic conductivity via simultaneously optimizing the phase and chemistry of the primary and secondary phases” has just been published in the Journal of Power Sources. In this work co-first-authored by Mojitaba Samiee (Luo group) and Balachandran Radhakrishnan (Ong group), we show that divalent dopants with low solubility in NASICON…

Goodbye to Bala

This week, we say goodbye to our very first alumni, Bala. We wish Bala all the best in his new post at NASA, and look forward to his future discoveries and success as a researcher!

Editor for Computational Materials Science

Professor Ong has been appointed to the Editorial Board of Computational Materials Science. The goal of Computational Materials Science is to report on results that provide new insights into, or significantly expand our understanding of, the properties of materials or phenomena associated with their design, synthesis, processing, characterization, and utilization. All aspects of modern materials…

New Li3Y(PS4)2 and Li5PS4Cl2 Superionic Conductors

Zhuoying’s first author paper on “Li3Y(PS4)2 and Li5PS4Cl2, New Lithium Superionic Conductors Predicted from Silver Thiophosphates using Efficiently Tiered Ab Initio Molecular Dynamics Simulations” has just been published in Chemistry of Materials (Special Issue on High-Throughput Functional Materials Discovery). In this work, we propose two new lithium superionic conductors, Li3Y(PS4)2 and Li5PS4Cl2, that are predicted…

2016 year-end message by Prof Ong

2016 is coming to a close. Before some of you leave for the holidays, I would like to wish you all a Merry Christmas. This year, I have decided to start a new tradition – the year-end message. It has been a great year for the Materials Virtual Lab. We have come a long way…

We are hiring!

We are seeking to fill one postdoctoral position. Successful candidates will have the opportunity to lead exciting projects that integrate advanced first principles methods, information technology and experiments (through external collaborations) to develop novel materials in energy storage and solid-state lighting. They will also receive mentoring to prepare them for future careers in academia or…

Structure-Property-Composition Relations in β-SiAlON:Eu2+ Phosphor

Our work on “Elucidating Structure–Composition–Property Relationships of the β-SiAlON:Eu2+ Phosphor” has been published in Chemistry of Materials. Using first-principles calculations, we identified and confirmed various chemical rules for Si−Al, O−N, and Eu activator ordering in β-SiAlON, one of the most promising narrow-band green phosphors for high-power light-emitting diodes and liquid crystal display backlighting with wide color…