Universal ML model for GB energies

Weike’s swansong project in our group on “A Universal Machine Learning Model for Elemental Grain Boundary Energies” has just been published in Scripta Materialia! The grain boundary (GB) energy has a profound influence on the grain growth and properties of polycrystalline metals. Here, we show that the energy of a GB, normalized by the bulk cohesive energy, can be described purely by four geometric features to within a mean absolute error of 0.13 Jm-2 . More importantly, this universal GB energy model can be extrapolated to the energies of high Σ GBs without loss in accuracy. These results highlight the importance of capturing fundamental scaling physics and domain knowledge in the design of interpretable, extrapolatable machine learning models for ma­terials science. Check out this work here.

Cover art for Chemistry of Materials

Mahdi’s cover art for his recent paper “MxLa1-xSiO2-yNz (M = Ca/Sr/Ba): Elucidating and Tuning the Structure and Eu2+ Local Environments to Develop Full-Visible Spectrum Phosphors” has been selected for the Front Cover of Chemistry of Materials!

MRS Spring 2022: Design of Alkali Superionic Conductors with Machine Learning

Prof Ong gave a talk on Design of Alkali Superionic Conductors with ML at the MRS Spring 2022 meeting. In this talk, he highlights how new developments in using ML to construct interatomic potentials can greatly extend the accessible time and length scales in simulations, which can in turn lead to improved accuracy and new insights into the behavior of alkali superionic conductors. He also talks about the development of a universal graph potential for the periodic table utilizing data on structural relaxations performed by the Materials Project over the past 10 years.

Efficient near-infrared phosphors

Efficient near-infrared (NIR) LEDs are used in many applications, including medical diagnostics, food detection, security monitoring, and machine vision. In this collaborative work with the group of Prof Rong-jun Xie at Xiamen University published in Matter, Mahdi Amachraa developed descriptors of the Eu(II)-host interactions to predict the 5d-to-4f energy gap with a RMSE of 7.0 nm. By incorporating this predictor into a high-throughput screening of 223 nitride materials in the Inorganic Crystal Structure Database, we identified and experimentally validated (Sr,Ba)3Li4Si2N6:Eu(II) with NIR emissions of 800- 830 nm and high quantum efficiencies (QEs) of 30%-40%. This NIR emitter has 3x more power than prevailing NIR emitters. We demonstrate that the ultralong emission wavelength and high QE stem from a coordinated energy transfer and an optimized electronic delocalization around Eu(II). Check out this work here.

DRX Li3Nb2O5 Electrode

Our collaborative work with the group of Prof Claire Xiong on “Electrochemically induced amorphous-to-rock-salt phase transformation in niobium oxide electrode for Li-ion batteries” has been published in Nature Materials! In this work, we report a nanostructured rock-salt Nb2O5 electrode formed through an amorphous-to-crystalline transformation during repeated electrochemical cycling with Li+. This electrode can reversibly cycle three lithiums per Nb2O5, corresponding to a capacity of 269 mAh/g at 20 mA/g, and retains a capacity of 191 mAh/g at a high rate of 1 A/g. The main contribution from Yunxing Zuo of the Materials Virtual Lab is using DFT computations to show that the cubic rock-salt framework promotes the percolation of low-energy migration paths. We also develop a computable metric to identify other transition metal oxides with a likelihood of rock-salt formation. Our work suggests that inducing crystallization of amorphous nanomaterials through electrochemical cycling is a promising avenue for creating unconventional high-performance metal oxide electrode materials. Check out the publication here.