Interfacial Stability of NMC cathodes

Congrats to Hideyuki Komatsu, our visiting scientist from Nissan, on his first author work “Interfacial Stability of Layered LiNixMnyCo1−x−yO2 Cathodes with Sulfide Solid Electrolytes in All-Solid-State Rechargeable Lithium-Ion Batteries from First-Principles Calculations” published in the Journal of Physical Chemistry C! In this work, we explore the relationship between the composition of layered LiNixMnyCo1−x−yO2 (NMC) cathodes and interfacial stability in all-solid-state lithium-ion batteries. A key insight is that the broader commercial trend towards high Ni content to reduce cost leads to significantly more reactive interfaces with the Li6PS5Cl argyrodite solid electrolyte. This suggests that current efforts to reduce the Co content in cathodes may compromise potential applications in all-solid-state architectures. Nevertheless, we find that common SEI phases such as Li2CO3, surface phases such as NiO, and oxide buffer layers such as LiNbO3 can provide effective protection between NMC and LPSCl. Check out the work here.