The intercalation chemistry of DRX-Li3V2O5 anode
Xingyu’s swansong work in the Materials Virtual Lab, “Intercalation Chemistry of the Disordered Rocksalt Li3V2O5 Anode from Cluster Expansions and Machine Learning Interatomic Potentials” has been published in Chemistry of Materials! We revisited the intercalation chemistry of the highly promising DRX-Li3V2O5 using machine learning-based computational techniques that enable much larger scale simulations. DRX Li3V2O5 is a promising anode candidate for rechargeable lithium-ion batteries because of its low voltage, high rate capability, and good cycling stability. In contrast to previous DFT studies, we show that insertion of Li primarily occurs in the tetrahedral sites and that the voltage profile depends critically on the initial Li/V disorder. MD simulations also show that DRX-Li3V2O5 has a fast Li diffusivity, which depends on the concentration of Li. We propose tuning the Li:V ratio as a means of trading off increased lithiation capacity and decreased anode voltage in this system. This work provides in-depth insights into the high-performance DRX-Li3V2O5 anode and paves the way for the discovery of other disordered anode materials. Check out the work here.