Water Contributes to Higher Energy Density and Cycling Stability of Prussian Blue Analogue Cathodes for Aqueous Sodium-Ion Batteries
Xingyu’s first paper titled “Water Contributes to Higher Energy Density and Cycling Stability of Prussian Blue Analogue Cathodes for Aqueous Sodium-Ion Batteries” is now published in Chemistry of Materials! In this work, we show that dry Prussian blue analogues (PBAs), one of the most promising cathode materials for aqueous sodium-ion batteries for large-scale energy-storage systems, generally undergo a phase transition from a rhombohedral Na2PR(CN)6 to a tetragonal/cubic PR(CN)6 during Na extraction. However, the presence of water fundamentally alters this phsae behavior, increasing an increase in the average voltage and a reduction in volume change during electrochemical cycling, resulting in both higher energy density and better cycling stability. We also identiļ¬ed four new promising PBA compositions, Na2CoMn(CN)6, Na2NiMn(CN)6, Na2CuMn(CN)6 and Na2ZnMn(CN)6 for further exploration.
You must be logged in to post a comment.