Li3N eSNAP potential and other publications

Li3N arrhenius plot

Zhi Deng is the lead author in our recently published work in npj Computational Materials on a machine-learned (ML) electrostatic Spectral Neighbor Analysis Potential (eSNAP) for Li3N, a prototypical superionic conductor. By incorporating long-ranged electrostatics, we developed a highly accurate eSNAP model for Li3N that far outperforms traditional potentials in the prediction of energies, forces and properties such as lattice constants, elastic constants, and phonon dispersion curves. Most importantly, we demonstrate that the eSNAP enables long-time, large-scale Li diffusion studies in Li3N, computing the Haven ratio and simulating GB diffusion in Li3N for the first time to excellent agreement with experimental values.

Our group members are also co-authors in several recently published works.