Goodbye to Bala

This week, we say goodbye to our very first alumni, Bala. We wish Bala all the best in his new post at NASA, and look forward to his future discoveries and success as a researcher!

Editor for Computational Materials Science

Professor Ong has been appointed to the Editorial Board of Computational Materials Science. The goal of Computational Materials Science is to report on results that provide new insights into, or significantly expand our understanding of, the properties of materials or phenomena associated with their design, synthesis, processing, characterization, and utilization. All aspects of modern materials…

New Li3Y(PS4)2 and Li5PS4Cl2 Superionic Conductors

Zhuoying’s first author paper on “Li3Y(PS4)2 and Li5PS4Cl2, New Lithium Superionic Conductors Predicted from Silver Thiophosphates using Efficiently Tiered Ab Initio Molecular Dynamics Simulations” has just been published in Chemistry of Materials (Special Issue on High-Throughput Functional Materials Discovery). In this work, we propose two new lithium superionic conductors, Li3Y(PS4)2 and Li5PS4Cl2, that are predicted…

2016 year-end message by Prof Ong

2016 is coming to a close. Before some of you leave for the holidays, I would like to wish you all a Merry Christmas. This year, I have decided to start a new tradition – the year-end message. It has been a great year for the Materials Virtual Lab. We have come a long way…

Structure-Property-Composition Relations in β-SiAlON:Eu2+ Phosphor

Our work on “Elucidating Structure–Composition–Property Relationships of the β-SiAlON:Eu2+ Phosphor” has been published in Chemistry of Materials. Using first-principles calculations, we identified and confirmed various chemical rules for Si−Al, O−N, and Eu activator ordering in β-SiAlON, one of the most promising narrow-band green phosphors for high-power light-emitting diodes and liquid crystal display backlighting with wide color…

Thermodynamic scale of inorganic crystalline metastability

Prof Ong is a co-author on a recent article in Science Advances on the thermodynamic scale of inorganic crystalline metastability. This article uses the Materials Project, its API and pymatgen to perform a large-scale data-mining study of the thermodynamic scale of metastability for 29,902 observed inorganic crystalline phases. Press release is available on EurekAlert.

Ocean Discovery Institute

Professor Ong gave a talk on careers in STEM to 5th grade students from Hamilton Elementary at the Ocean Discovery Institute last Fri (Oct 14, 2016). He also worked with on building remotely operated vehicles. Check out the pictures below!

Room-Temperature All-solid-state Na-ion Batteries with Cl-doped Na3PS4

In collaboration with the Laboratory of Energy Storage and Conversion (LESC), we have developed a room-temperature all-solid-state rechargeable sodium-ion battery utilizing a novel Cl-doped Na3PS4 superionic conductor. The Cl-doped tetragonal Na3PS4 solid electrolyte exhibits room-temperature Na+ conductivity exceeding 1 mS/cm, and an all-solid-state TiS2/t-Na3−xPS4−xClx/Na cell utilizing this solid electrolyte can be cycled at room-temperature at…

Materials Virtual Lab Retreat 2016

The Materials Virtual Lab held its first ever retreat today. We had a great day strategizing future research directions followed by a BBQ at La Jolla Shores. We officially welcome Chi Chen, Hui Zheng, and Zhuonan Lin to the group, and congratulate Richard Tran on transiting to a graduate student!