Interfacial Stability of NMC cathodes

Congrats to Hideyuki Komatsu, our visiting scientist from Nissan, on his first author work “Interfacial Stability of Layered LiNixMnyCo1−x−yO2 Cathodes with Sulfide Solid Electrolytes in All-Solid-State Rechargeable Lithium-Ion Batteries from First-Principles Calculations” published in the Journal of Physical Chemistry C! In this work, we explore the relationship between the composition of layered LiNixMnyCo1−x−yO2 (NMC) cathodes and interfacial stability in all-solid-state lithium-ion batteries. A key insight is that the broader commercial trend towards high Ni content to reduce cost leads to significantly more reactive interfaces with the Li6PS5Cl argyrodite solid electrolyte. This suggests that current efforts to reduce the Co content in cathodes may compromise potential applications in all-solid-state architectures. Nevertheless, we find that common SEI phases such as Li2CO3, surface phases such as NiO, and oxide buffer layers such as LiNbO3 can provide effective protection between NMC and LPSCl. Check out the work here.

Interfacial Stability of Lithium Sulfur Batteries

Congratulations to Manas Likhit Holekevi Chandrappa, Ji Qi, Chi Chen and Swastika Banerjee on the publication of “Thermodynamics and Kinetics of the Cathode−Electrolyte Interface in All-Solid-State Li−S Batteries” in the Journal of the American Chemical Society! Lithium−sulfur batteries (LSBs) use cheap and abundant sulfur in place of expensive metal-based cathodes. Using a solid electrolyte in place of traditional liquid electrolytes mitigates polysulfide shuttling, a key impediment to LSB commercialization. In this work, we present a comprehensive study of the thermodynamics and kinetics of the cathode−electrolyte interface in all-solid-state LSBs. Using DFT calculations, we show that among the major solid electrolyte chemistries (oxides, sulfides, nitrides, and halides), sulfides are the most stable solid electrolytes against the S cathode, as well as the most promising buffer layers if the use of other SE chemistries is desired. Finally, MD simulations with an accurate machine learning interatomic potential revealed that the most stable Li3PS4(100)/S interfaces form 2D channels with lower activation barriers for Li diffusion. These results provide critical new insights into the cathode−electrolyte interface design for next-generation all-solid-state LSBs. We gratefully acknowledge Nissan Motor Inc and Nissan North America for their generous support for this work! This work has been published open access […]

CdS/V3O5 for Neuromorphic Computing

Congratulations to Jasleen on her first co-author paper on “An Optoelectronic Heterostructure for Neuromorphic Computing: CdS/V3O5” in Applied Physics Letters! Nonvolatile resistive switching is one of the key phenomena for emerging applications in optoelectronics and neuromorphic computing. However, the stochastic nature of the ion migration can be an impediment for the device robustness and controllability, with uncontrolled variations of high and low resistance states or threshold voltages. In this work, we report an optically induced resistive switching based on a CdS/V3O5 heterostructure. V3O5 is known to have a second order insulator to metal transition around 415 K, with an electrically induced threshold switching at room temperature. Upon illumination, the direct transfer of the photoinduced carriers from the CdS into V3O5 produces a nonvolatile resistive switching at room temperature. Jasleen’s contribution is in using DFT calculations to understand the defects present in V3O5 and the effects of electron doping. We show that electrons (generated by CdS under illumination) injected in V3O5 are trapped in a deep state, slowing the “low” temperature relaxation rate. For the LT phase (T < 340 K), the photoexcited electrons trapped into the oxygen vacancy are unable to overcome the barrier, and therefore, no relaxation is observed. […]

CCMS Summer Institute Lecture 2022

Graphs are a natural way to represent atoms and bonds. In this lecture titled “Mathematical Graphs as a Representation for Materials”, Prof Shyue Ping Ong introduces the basics of graph deep learning and its application in materials science. MatErials Graph Networks (MEGNet) models have immense flexibility and expressiveness that can be adapted to datasets of diverse quality and quantity. We also demonstrate how the application of simple principles like energy minimization or interatomic development with materials graph models with 3-body interactions (M3GNet) can be used in the discovery of new materials **without** ab initio calculations, paving the way for massive-scale computational materials design. Prof Ong also introduces the matterverse.ai initiative, an open initiative to use ML to greatly expand the explorable matterverse. This lecture also includes two hands-on tutorials using Google Colab to demonstrate key concepts and the application of MEGNet and M3GNet models for property predictions and crystal structure relaxation. This Lecture is part of the Lawrence Livermore National Laboratory (LLNL) Computational Chemistry & Materials Science (CCMS) Summer Institute held from June 6 to August 12, 2022. The program offers graduate students the opportunity to work directly with leading LLNL researchers on the development and application of cutting-edge methods […]

Universal ML model for GB energies

Weike’s swansong project in our group on “A Universal Machine Learning Model for Elemental Grain Boundary Energies” has just been published in Scripta Materialia! The grain boundary (GB) energy has a profound influence on the grain growth and properties of polycrystalline metals. Here, we show that the energy of a GB, normalized by the bulk cohesive energy, can be described purely by four geometric features to within a mean absolute error of 0.13 Jm-2 . More importantly, this universal GB energy model can be extrapolated to the energies of high Σ GBs without loss in accuracy. These results highlight the importance of capturing fundamental scaling physics and domain knowledge in the design of interpretable, extrapolatable machine learning models for ma­terials science. Check out this work here.

Cover art for Chemistry of Materials

Mahdi’s cover art for his recent paper “MxLa1-xSiO2-yNz (M = Ca/Sr/Ba): Elucidating and Tuning the Structure and Eu2+ Local Environments to Develop Full-Visible Spectrum Phosphors” has been selected for the Front Cover of Chemistry of Materials!

MRS Spring 2022: Design of Alkali Superionic Conductors with Machine Learning

Prof Ong gave a talk on Design of Alkali Superionic Conductors with ML at the MRS Spring 2022 meeting. In this talk, he highlights how new developments in using ML to construct interatomic potentials can greatly extend the accessible time and length scales in simulations, which can in turn lead to improved accuracy and new insights into the behavior of alkali superionic conductors. He also talks about the development of a universal graph potential for the periodic table utilizing data on structural relaxations performed by the Materials Project over the past 10 years.

Efficient near-infrared phosphors

Efficient near-infrared (NIR) LEDs are used in many applications, including medical diagnostics, food detection, security monitoring, and machine vision. In this collaborative work with the group of Prof Rong-jun Xie at Xiamen University published in Matter, Mahdi Amachraa developed descriptors of the Eu(II)-host interactions to predict the 5d-to-4f energy gap with a RMSE of 7.0 nm. By incorporating this predictor into a high-throughput screening of 223 nitride materials in the Inorganic Crystal Structure Database, we identified and experimentally validated (Sr,Ba)3Li4Si2N6:Eu(II) with NIR emissions of 800- 830 nm and high quantum efficiencies (QEs) of 30%-40%. This NIR emitter has 3x more power than prevailing NIR emitters. We demonstrate that the ultralong emission wavelength and high QE stem from a coordinated energy transfer and an optimized electronic delocalization around Eu(II). Check out this work here.

DRX Li3Nb2O5 Electrode

Our collaborative work with the group of Prof Claire Xiong on “Electrochemically induced amorphous-to-rock-salt phase transformation in niobium oxide electrode for Li-ion batteries” has been published in Nature Materials! In this work, we report a nanostructured rock-salt Nb2O5 electrode formed through an amorphous-to-crystalline transformation during repeated electrochemical cycling with Li+. This electrode can reversibly cycle three lithiums per Nb2O5, corresponding to a capacity of 269 mAh/g at 20 mA/g, and retains a capacity of 191 mAh/g at a high rate of 1 A/g. The main contribution from Yunxing Zuo of the Materials Virtual Lab is using DFT computations to show that the cubic rock-salt framework promotes the percolation of low-energy migration paths. We also develop a computable metric to identify other transition metal oxides with a likelihood of rock-salt formation. Our work suggests that inducing crystallization of amorphous nanomaterials through electrochemical cycling is a promising avenue for creating unconventional high-performance metal oxide electrode materials. Check out the publication here.

Congratulations to Swastika!

Congratulations to group alumni, Swastika Banerjee, on starting her assistant professorship at Indian Institute of Technology – Roorkee! We wish her all the best in her scientific career!