Bridging computational and experimental predictions in materials machine learning models
Prof Ong gave a talk on bridging computational and experimental predictions in materials machine learning models at the CNLS Virtual Workshop Machine Learning in Chemical and Materials Sciences held on May 12 2021. This talk discusses the sources of ML prediction errors, namely model errors and data errors, and demonstrate how these errors can be mitigated using appropriate techniques. For example, multi-fidelity/multi-task models can help small data models learn from larger, less accurate data models, while choosing an appropriate DFT functional for computing energies and forces for ML interatomic potentials can significantly improve the agreement with experimental measurements. You can jump to the relevant chapter of interest below!