Zhi Deng is the lead author in our recently published work in npj Computational Materials on a machine-learned (ML) electrostatic Spectral Neighbor Analysis Potential (eSNAP) for Li3N, a prototypical superionic conductor. By incorporating long-ranged electrostatics, we developed a highly accurate eSNAP model for Li3N that far outperforms traditional potentials in the prediction of energies, forces and properties such as lattice constants, elastic constants, and phonon dispersion curves. Most importantly, we demonstrate that the eSNAP enables long-time, large-scale Li diffusion studies in Li3N, computing the Haven ratio and simulating GB diffusion in Li3N for the first time to excellent agreement with experimental values.
Our group members are also co-authors in several recently published works.
- Group alumnus Zhenbin Wang co-authored “Color Tunable Single-Phase Eu2+ and Ce3+ Co-Activated Sr2LiAlO4 Phosphors” published in Journal of Materials Chemistry C, a work that builds on the Sr2LiAlO4 phosphor previously discovered by our group using data mining and DFT computations to show that co-doping of Eu2+ and Ce3+ can be used to tune the color of the Sr2LiAlO4 phosphor.
- Zhuoying co-authored a work on “Elucidating the Limit of Li Insertion into the Spinel Li4Ti5O12” published in ACS Materials Letters. Our contribution is using DFT computations to identify the structures and voltage profile of LixTi5O12 when lithiated to Li8Ti5O12.
- Yiming and Hanmei are coauthors on a paper on “2DMatPedia, an Open Computational Database of Two-Dimensional Materials from Top-down and Bottom-up Approaches” published in Scientific Data.