Jasleen’s first-author paper on “Polaron-induced metal-to-insulator transition in vanadium oxides from density functional theory calculations” is out in Physical Review B! Vanadium oxides are promising phase-change memory units for neuromorphic computing due to their metal-insulator transitions (MIT) at or near room temperature. In this work, we show that V3O5 exhibits very low hole and electron polaron migration barriers (< 100 meV) compared to V2O3 and VO2, leading to much higher estimated polaronic conductivity. The relative migration barriers are found to be related to the amount of distortion that has to travel when the polaron migrate from one site to another. Polarons in V3O5 also have smaller binding energies to vanadium and oxygen vacancy defects. These results explain recent experiment studies showing the injection of charge carriers into vanadium oxides as an alternative switching mechanism and also potentially as a means to tune the MIT temperature. Check out this work here.