Publications

Na-Solid Electrolyte Interphases

Posted on

We are proud to be part of a collaborative publication with the Laboratory of Energy Storage and Conversion on “New Insights into the Interphase between the Na Metal Anode and Sulfide Solid-State Electrolytes: A Joint Experimental and Computational Study” published in ACS Applied Materials & Interfaces. This combined experimental and computational study shows that capacity fade is primarily brought about by the reaction between the Na anode and Na solid electrolytes such as Na3SbS4, Na3PS4, and Cl-doped Na3PS4, and demonstrates techniques that can be used to identify the interfacial products. Read the article here!

News

Ensemble learning of X-ray Absorption Spectra

Posted on

Chen’s paper on “Automated generation and ensemble-learned matching of X-ray absorption spectra” has been published in npj Computational Materials. In this work, we developed XASdb, a large database of computed reference X-ray absorption spectra (XAS), and a novel Ensemble-Learned Spectra IdEntification (ELSIE) algorithm for the matching of spectra. XASdb currently hosts more than 800,000 K-edge X-ray absorption near-edge spectra (XANES) for over 40,000 materials from the open-science Materials Project database. We will demonstrate that the ELSIE algorithm, which combines 33 weak “learners” comprising a set of preprocessing steps and a similarity metric, can achieve up to 84.2% accuracy in identifying the correct oxidation state and coordination environment. The XASdb with the ELSIE algorithm has been integrated into a web application in the Materials Project, providing an important new public resource for the analysis of XAS to all materials researchers. Finally, the ELSIE algorithm itself has been made available as part of Veidt, an open source machine learning library for materials science.

News

Our first PhD, Zhenbin Wang

Posted on

Congratulations to Zhenbin Wang for successfully defending his PhD thesis on Mar 6! Zhenbin is the first PhD graduate from the Materials Virtual Lab.

Zhenbin joined the Materials Virtual Lab in Sep 2014 from the University of Science and Technology of China. During his PhD, Zhenbin has done ground-breaking work on the design and discovery of phosphor materials for white light-emitting diodes. He has devised new ways to screen for narrow-band red-emitting phosphors, provided useful optimization insights for the β-SiAlON green phosphor, and discovered a completely novel, earth-abundant phosphor host Sr2LiAlO4 that has been confirmed experimentally. Zhenbin is also an outstanding mentor to his fellow group members, having helped guide many to their own research findings.

Check out Zhenbin’s tribute video from group members and photos of the defense and celebration by clicking on the full post!

Publications

Predicting Crystal Volumes

Posted on

Iek-Heng Chu’s paper on “Predicting the Volumes of Crystals” has been published in Computational Materials Science. In this collaborative work with the Hacking Materials group, we developed two schemes for predicting crystal volumes. Accurate crystal volume estimates are immensely useful for further experimental analysis, or to generate initial guesses for electronic structure optimizations. The volume prediction algorithms are implemented in the open-source pymatgen software.

Publications

First-order Interfacial Transformations in GB

Posted on

Hui Zheng is a co-author on a recently published article in Physical Review Letters on “First-Order Interfacial Transformations with a Critical Point: Breaking the Symmetry at a Symmetric Tilt Grain Boundary”. A collaboration with the Luo group, this work examines symmetry breaking in the ∑5 (210) GB using a modified genetic algorithm with Monte Carlo and molecular dynamics simulations. Read more about this work here.

Announcements

Sr2LiAlO4 – A novel earth-abundant phosphor with excellent color quality

Posted on

Our paper on “Mining Unexplored Chemistries for Phosphors for High-Color-Quality White-Light-Emitting Diodes” has been published in Joule. Using supercomputers and data mining, we identified Sr2LiAlO4, the first known Sr-Li-Al-O quaternary crystal, as a highly promising phosphor material in low-cost, high-color-quality white LEDs. Eu2+ and Ce3+-activated Sr2LiAlO4 phosphors exhibit broad green-yellow and blue emissions, respectively, with excellent thermal quenching resistance of > 88% intensity at 150oC. A prototype phosphor-converted white LED utilizing Sr2LiAlO4-based phosphors yields an excellent color rendering index exceeding 90. This work is a collaboration between the Materials Virtual Lab (UCSD), McKittrick group (UCSD) and Im group (Chonnam University). The lead authors are Zhenbin Wang, Jungmin Ha and Yoon Hwa Kim.

More information about this work can be found in the Jacobs School of Engineering News as well as Science Daily, Phys.org, etc.

Announcements

Pythia

Posted on

Meet the newest member of our group, Pythia@Mavrl. Named after the famed oracle of antiquity, Pythia is a GPU-based deep learning machine from Lambda Labs. Our lab will be utilizing Pythia to develop cutting edge models for materials property prediction and discovery.

Announcements

Scialog: Advanced Energy Storage Team Award

Posted on

Prof Ong’s team is one of six teams selected for the Scialog Advanced Energy Storage Team Awards by the Research Corporation (Rescorp) for Science Advancement. This project is a collaboration with Prof Scott Warren of University of North Carolina at Chapel Hill and Prof Zhenxing Feng of Oregon State University to develop high-voltage dual-ion batteries. More information can be found in the Rescorp press release.